Классические методы математической физики - 198 стр.

UptoLike

Составители: 

x t
u(x, t) =
1
4πa
Z
S
at
(x)
ϕ(y)
r
r
=
1
4πa
2
t
Z
S
at
(x)
ϕ(ξ, η, ζ)
r
, y = (ξ, η, ζ) S
at
(x),
r = at
r
S
at
(x)
y
y = x + atn(y) ξ = x + αat, η = y + βat,
ζ = z + γat, n(y) = (α(y), β(y), γ(y)).
n(y) S
at
(x)
y α, β γ
α = cosψsinθ β = sinψsinθ γ = cosθ θ [0, π] ψ [ 0, 2π)
y S
at
(x)
n(y) (α, β, γ)
S
1
= S
1
(0)
r
S
r
1
S
1
r
= r
2
1
1
= sinθdθ
S
at
S
r
y n(y) = (α, β, γ) S
1
,
r
= r
2
1
(at)
2
1
,
èíòåãðàë, çàâèñÿùèé îò ïàðàìåòðîâ x è t, îïðåäåëÿåìûé îðìóëîé
           1     ϕ(y)         1
              Z                    Z
u(x, t) =             dσr =           ϕ(ξ, η, ζ)dσr, y = (ξ, η, ζ) ∈ Sat (x),
          4πa      r        4πa2 t
             Sat (x)                    Sat (x)
                                                                   (3.4)
ãäå r = at, dσr  ýëåìåíò ïëîùàäè ñåðû Sat (x), ÿâëÿåòñÿ ðåøåíèåì âîë-
íîâîãî óðàâíåíèÿ (3.1).




                   èñ.3.1                             èñ.3.2
  Ïðåäñòàâèì y â âèäå

              y = x + atn(y) èëè ξ = x + αat, η = y + βat,
                       ζ = z + γat, n(y) = (α(y), β(y), γ(y)).          (3.5)
Çäåñü n(y)  åäèíè÷íûé âåêòîð âíåøíåé íîðìàëè ê ñåðå Sat (x) â òî÷êå
y, íàïðàâëÿþùèå êîñèíóñû α, β è γ êîòîðîãî îïðåäåëÿþòñÿ îðìóëàìè
α = cosψsinθ, β = sinψsinθ, γ = cosθ, ãäå θ ∈ [0, π], ψ ∈ [0, 2π)  óãëîâûå
êîîðäèíàòû òî÷êè y â ñåðè÷åñêîé ñèñòåìå êîîðäèíàò ñ öåíòðîì â òî÷êå
x. Êîãäà òî÷êà (òî÷íåå êîíåö ðàäèóñ-âåêòîðà) y ïðîáåãàåò ñåðó Sat (x),
ñîîòâåòñòâóþùèé âåêòîð íîðìàëè n(y) (òî÷íåå òî÷êà (α, β, γ)) ïðîáåãàåò
åäèíè÷íóþ ñåðó S1 = S1 (0) ñ öåíòðîì â íà÷àëå êîîðäèíàò, ïðè÷åì ìåæäó
ýëåìåíòàìè ïëîùàäåé dσr ñåðû Sr è dσ1 ñåðû S1 âûïîëíÿåòñÿ ñîîòíî-
øåíèå dσr = r2 dσ1 , ãäå dσ1 = sinθdθdψ . Ñ ó÷åòîì ýòîãî äåëàÿ â èíòåãðàëå
(3.4) çàìåíó

    Sat ≡ Sr ∋ y → n(y) = (α, β, γ) ∈ S1 , dσr = r2 dσ1 ≡ (at)2 dσ1,    (3.6)



                                         198