ВУЗ:
Составители:
Рубрика:
y B
at
(x)
∂u(x, t)
∂t
=
u(x, t)
t
+
I(x, t)
4πat
.
t
∂
2
u(x, t)
∂t
2
= −
u
t
2
+
1
t
u
t
+
I
4πat
−
I
4πat
2
+
1
4πat
∂I
∂t
=
1
4πat
∂I(x, t)
∂t
.
∂I(x, t)
∂t
= a
Z
S
at
(x)
∆ϕ(y)|
y=x+atn
dσ
r
.
I B
at
(x)
(ρ, θ, ψ) x y = x + ρn 0 ≤ ρ < at
I(x, t) =
at
Z
0
2π
Z
0
π
Z
0
∆ϕ(y)ρ
2
sin θdθdψdρ, y = x + ρn ∈ B
at
(x).
t
S
1
S
at
(x)
∂I(x, t)
∂t
= a
2π
Z
0
π
Z
0
∆ϕ(y)a
2
t
2
sin θdθdψ = a
3
t
2
Z
S
1
∆ϕ(y)dσ
1
= a
Z
S
at
(x)
∆ϕ(y)dσ
r
,
y = x + atn
∂
2
u(x, t)
∂t
2
=
a
4π
Z
S
at
(x)
∆ϕ(y)
r
y=x+atn
dσ
r
.
u
ϕ ∈ C
2
(R
3
)
u
u|
t=0
= 0,
∂u
∂t
t=0
= ϕ(x)
R
3
.
ãäå òî÷êà y âî âòîðîì è òðåòüåì èíòåãðàëàõ ïðîáåãàåò âåñü øàð Bat (x),
ïåðåïèøåì (3.11) â âèäå
∂u(x, t) u(x, t) I(x, t)
= + . (3.13)
∂t t 4πat
Äèåðåíöèðóÿ ýòî âûðàæåíèå ïî t, ïîëó÷èì
∂ 2u(x, t)
u 1 u I I 1 ∂I 1 ∂I(x, t)
= − + + − + = . (3.14)
∂t2 t2 t t 4πat 4πat2 4πat ∂t 4πat ∂t
Íåòðóäíî âèäåòü, ÷òî
∂I(x, t)
Z
=a ∆ϕ(y)|y=x+atn dσr . (3.15)
∂t
Sat (x)
 ñàìîì äåëå, ïåðåõîäÿ â èíòåãðàëå I ïî øàðó Bat(x) ê ñåðè÷åñêèì êîîð-
äèíàòàì (ρ, θ, ψ) ñ öåíòðîì â òî÷êå x, ïîëàãàÿ y = x + ρn, ãäå 0 ≤ ρ < at,
èìååì
Zat Z2π Zπ
I(x, t) = ∆ϕ(y)ρ2 sin θdθdψdρ, y = x + ρn ∈ Bat (x).
0 0 0
Äèåðåíöèðóÿ ïî âðåìåíè t, âõîäÿùåìó â ïåðåìåííûé âåðõíèé ïðåäåë
âíåøíåãî èíòåãðàëà, è ïåðåõîäÿ ïîñëåäîâàòåëüíî ê èíòåãðàëàì ïî åäèíè÷-
íîé ñåðå S1 è ñåðå Sat (x), ïîëó÷àåì ñîîòíîøåíèå
Z2π Zπ
∂I(x, t)
Z Z
2 2 3 2
=a ∆ϕ(y)a t sin θdθdψ = a t ∆ϕ(y)dσ1 = a ∆ϕ(y)dσr ,
∂t
0 0 S1 Sat (x)
ãäå y = x + atn. Òåì ñàìûì (3.15) äîêàçàíî. Èç (3.14) è (3.15) âûòåêàåò, â
ñâîþ î÷åðåäü, ÷òî
∂ 2u(x, t) a ∆ϕ(y)
Z
= dσr . (3.16)
∂t2 4π r y=x+atn
Sat (x)
Ïîäñòàâëÿÿ (3.9) è (3.16) â (3.1), ïðèõîäèì ê âûâîäó, ÷òî óíêöèÿ u,
îïðåäåëÿåìàÿ îðìóëîé (3.4), óäîâëåòâîðÿåò âîëíîâîìó óðàâíåíèþ (3.1)
äëÿ ëþáîé óíêöèè ϕ ∈ C 2 (R3 ). Èç (3.7) è (3.10), êðîìå òîãî, ñëåäóåò, ÷òî
óíêöèÿ u óäîâëåòâîðÿåò íà÷àëüíûì óñëîâèÿì
∂u
u|t=0 = 0, = ϕ(x) â R3 . (3.17)
∂t t=0
200
Страницы
- « первая
- ‹ предыдущая
- …
- 198
- 199
- 200
- 201
- 202
- …
- следующая ›
- последняя »
