ВУЗ:
Составители:
Рубрика:
S
1
u(x, t) =
t
4π
Z
S
1
ϕ(y)dσ
1
≡
t
4π
Z
S
1
ϕ(x + αat, y + βat, z + γat)dσ
1
.
u ∈ C
l
(R
4
) ϕ ∈ C
l
(R
3
) l =
1, 2, 3...
∆u(x, t) =
t
4π
Z
S
1
∂
2
ϕ(y)
∂ξ
2
+
∂
2
ϕ(y)
∂η
2
+
∂
2
ϕ(y)
∂ζ
2
dσ
1
≡
t
4π
Z
S
1
∆ϕ(y)dσ
1
,
y = x + atn
∆u(x, t) ≡
1
4πa
2
t
Z
S
at
(x)
∆ϕ(y)|
y=x+atn
dσ
r
, y = ( ξ, η, ζ) ∈ S
at
(x).
t
∂u(x, t)
∂t
=
1
4π
Z
S
1
ϕ(y)dσ
1
+
at
4π
Z
S
1
α
∂ϕ(y)
∂ξ
+ β
∂ϕ(y)
∂η
+ γ
∂ϕ(y)
∂ζ
dσ
1
,
y = x + atn
∂u(x, t)
∂t
=
u(x, t)
t
+
1
4πat
Z
S
at
(x)
α
∂ϕ(y)
∂ξ
+ β
∂ϕ(y)
∂η
+ γ
∂ϕ(y)
∂ζ
dσ
r
=
=
u(x, t)
t
+
1
4πat
Z
S
at
(x)
gradϕ(y) · n(y)dσ
r
.
Z
S
at
(x)
gradϕ(y) ·n(y)dσ
r
=
Z
B
at
(x)
div [gradϕ(y)] dξdηdζ =
=
Z
B
at
(x)
∆ϕ(y)dξdηdζ ≡ I(x, t),
ïðåîáðàçóåì åãî ê ñîîòâåòñòâóþùåìó èíòåãðàëó ïî åäèíè÷íîé ñåðå S1 .
Ïîëó÷èì
t t
Z Z
u(x, t) = ϕ(y)dσ1 ≡ ϕ(x + αat, y + βat, z + γat)dσ1. (3.7)
4π 4π
S1 S1
Èç (3.7) âûòåêàåò, â ÷àñòíîñòè, ÷òî u ∈ C l (R4 ), åñëè ϕ ∈ C l (R3 ), l =
1, 2, 3... .
Äèåðåíöèðóÿ äâàæäû (3.7) ïîä çíàêîì èíòåãðàëà, èìååì
Z 2
∂ ϕ(y) ∂ 2ϕ(y) ∂ 2ϕ(y)
t t
Z
∆u(x, t) = + + dσ1 ≡ ∆ϕ(y)dσ1,
4π ∂ξ 2 ∂η 2 ∂ζ 2 4π
S1 S1
(3.8)
ãäå y = x + atn. Äåëàÿ â (3.8) çàìåíó, îáðàòíóþ ê (3.6), ïåðåïèøåì (3.8) â
âèäå
1
Z
∆u(x, t) ≡ ∆ϕ(y)|y=x+atndσr , y = (ξ, η, ζ) ∈ Sat (x). (3.9)
4πa2 t
Sat (x)
Äèåðåíöèðóÿ äàëåå (3.7) ïî t, ïîëó÷èì
Z
∂u(x, t) 1 at ∂ϕ(y) ∂ϕ(y) ∂ϕ(y)
Z
= ϕ(y)dσ1 + α +β +γ dσ1,
∂t 4π 4π ∂ξ ∂η ∂ζ
S1 S1
(3.10)
ãäå y = x + atn. Ó÷èòûâàÿ (3.7) è äåëàÿ âî âòîðîì èíòåãðàëå îáðàòíóþ ê
(3.6) çàìåíó, ïåðåïèøåì (3.10) â âèäå
Z
∂u(x, t) u(x, t) 1 ∂ϕ(y) ∂ϕ(y) ∂ϕ(y)
= + α +β +γ dσr =
∂t t 4πat ∂ξ ∂η ∂ζ
Sat (x)
u(x, t) 1
Z
= + gradϕ(y) · n(y)dσr . (3.11)
t 4πat
Sat (x)
Ïðèìåíÿÿ îðìóëó àóññàÎñòðîãðàäñêîãî âèäà
Z Z
gradϕ(y) · n(y)dσr = div [gradϕ(y)] dξdηdζ =
Sat (x) Bat (x)
Z
= ∆ϕ(y)dξdηdζ ≡ I(x, t), (3.12)
Bat (x)
199
Страницы
- « первая
- ‹ предыдущая
- …
- 197
- 198
- 199
- 200
- 201
- …
- следующая ›
- последняя »
