Классические методы математической физики - 209 стр.

UptoLike

Составители: 

t = 0 t
1
= R/a t
2
= 2R/a
D(t) u
R
n
n 3 n = 1 n
R
2
R
3
z
z = 0
ϕ
0
ϕ
1
Γ
Γ z
x = (x, y)
d
1
d
2
x
Γ t
1
t
2
0 t < t
1
Σ
at
(x) at
x ϕ
0
= ϕ
1
0 Σ
at
(x)
u(x, t) 0 x
t
1
t < t
1
= d
1
/a x
Σ
at
(x)
ϕ
2
0
+ϕ
2
1
6≡ 0 t t
2
= d
2
/a
u(x, t) 6≡ 0 t
1
< t <
t
1
= d/a x
p
(at)
2
(x ξ)
2
(y η)
2
u t
lim
t→∞
u(x, t) = 0
(Ω, ϕ
0
, ϕ
1
) t = 0
ðè÷åñêàÿ êàðòèíà ðàñïðîñòðàíåíèÿ âîëíû â ýòîì ñëó÷àå ïðåäñòàâëåíà íà
ðèñ.3.4à, ãäå â ìîìåíòû t = 0, t1 = R/a è t2 = 2R/a èçîáðàæåíû â âèäå
çàòåìíåííîé îáëàñòè íîñèòåëü D(t) âîëíû u òàê æå, êàê è åå ïåðåäíèé è
çàäíèé ðîíòû.
   Ïðèíöèï þéãåíñà âïåðâûå áûë ñîðìóëèðîâàí èì â 1678 ã., à äàëåå
áûë ðàçâèò À. Ôðåíåëåì â 1818 ã. ïðè èññëåäîâàíèè ïðîáëåì äèðàêöèè
âîëí. Ñòðîãàÿ ìàòåìàòè÷åñêàÿ îðìóëèðîâêà ïðèíöèïà þéãåíñà âïåðâûå
áûëà äàíà . åëüìãîëüöåì â 1859 ã. äëÿ ñòàöèîíàðíîãî è . Êèðõãîîì
â 1882 ã. äëÿ íåñòàöèîíàðíîãî ñëó÷àåâ. Ïîçæå â ðàáîòàõ Æ. Àäàìàðà áû-
ëî óñòàíîâëåíî, ÷òî ïðèíöèï þéãåíñà ñïðàâåäëèâ â ïðîñòðàíñòâå Rn ïðè
ëþáîì íå÷åòíîì n ≥ 3 è íå ñïðàâåäëèâ ïðè n = 1 è ëþáîì ÷åòíîì n (ñì.
îá ýòîì íèæå).
  3.4. Ôèçè÷åñêàÿ èíòåðïðåòàöèÿ ðåøåíèÿ çàäà÷è Êîøè äëÿ âîë-
íîâîãî óðàâíåíèÿ â        R2 . àññìîòðèì òåïåðü çàäà÷ó (3.20), (3.21). Åå ìîæ-
íî èíòåðïðåòèðîâàòü äâîÿêî: êàê çàäà÷ó î ðàñïðîñòðàíåíèè âîëí â ïðî-
ñòðàíñòâå R3 ïðè óñëîâèè, ÷òî íà÷àëüíûå äàííûå íå çàâèñÿò îò z , ëèáî êàê
çàäà÷ó î ðàñïðîñòðàíåíèè âîëíû íà ïëîñêîñòè z = 0.
   Êàê è âûøå, ñ÷èòàåì, ÷òî óíêöèè ϕ0 è ϕ1 ðàâíû íóëþ âíå íåêîòî-
ðîé îãðàíè÷åííîé îáëàñòè Ω ïëîñêîñòè, îãðàíè÷åííîé êîíòóðîì Γ, òàê ÷òî
âûïîëíÿåòñÿ óñëîâèå (3.26). Ýòî îçíà÷àåò, ÷òî íà÷àëüíîå âîçìóùåíèå ñî-
ñðåäîòî÷åíî: ïðè ïåðâîé èíòåðïðåòàöèè - âíóòðè áåñêîíå÷íîãî öèëèíäðà
ñ íàïðàâëÿþùåé Γ è îáðàçóþùèìè, ïàðàëëåëüíûìè îñè z ; ïðè âòîðîé èí-
òåðïðåòàöèè - âíóòðè ïëîñêîé îáëàñòè Ω. Íèæå ìû áóäåì ïðèäåðæèâàòüñÿ
âòîðîé èíòåðïðåòàöèè.
   Ïóñòü òî÷êà x = (x, y) ëåæèò âíå îáëàñòè Ω. Êàê è âûøå, îáîçíà÷èì
÷åðåç d1 è d2 ñîîòâåòñòâåííî íàèìåíüøåå è íàèáîëüøåå ðàññòîÿíèÿ îò x äî
òî÷åê ãðàíèöû Γ. Ââåäåì ìîìåíòû t1 è t2 ïî îðìóëå (3.27), íî, â îòëè÷èå
îò ïðåäûäóùåãî, ðàññìîòðèì òîëüêî äâà ñëó÷àÿ.
   1. 0 ≤ t < t1 .  ýòîì ñëó÷àå êðóã Σat (x) ðàäèóñà at ñ öåíòðîì â òî÷êå
x íàõîäèòñÿ âíå Ω. Ñëåäîâàòåëüíî, ϕ0 = ϕ1 ≡ 0 â Σat (x) è îðìóëà (3.24)
äàåò: u(x, t) ≡ 0. Ôèçè÷åñêè ýòî îçíà÷àåò, ÷òî äî òî÷êè x âîçìóùåíèå åùå
íå äîøëî.
   2. t1 ≤ t < ∞.  ìîìåíò t1 = d1 /a â òî÷êó x ïðèäåò ïåðåäíèé ðîíò âîë-
íû. Íà÷èíàÿ ñ ýòîãî ìîìåíòà, êðóã Σat(x) è îáëàñòü Ω áóäóò èìåòü îáùóþ
÷àñòü, ãäå ϕ20 +ϕ21 6≡ 0, ïðè÷åì ïðè t ≥ t2 = d2 /a ýòà îáùàÿ ÷àñòü ïðîñòî ñîâ-
ïàäàåò ñ Ω. Ïîýòîìó èç (3.24) ñëåäóåò, ÷òî u(x, t) 6≡ 0 ïðè t1 < t < ∞. Ýòî
îçíà÷àåò, ÷òî âîçìóùåíèå, ïîïàâ â ìîìåíò t1 = d/a â òî÷êó x, íèêîãäà íå
ïðåêðàòèòñÿ, êàê ýòî áûëî â ñëó÷àå p òðåõìåðíîãî ïðîñòðàíñòâà. Õîòÿ, ââè-
äó íàëè÷èÿ â (3.24) âûðàæåíèÿ (at)2 − (x − ξ)2 − (y − η)2 â çíàìåíàòåëå,
ðåøåíèå u áóäåò ñòðåìèòüñÿ ê íóëþ ïðè t → ∞, ò. å. áóäåò âûïîëíÿòü-
ñÿ óñëîâèå limt→∞ u(x, t) = 0. Òàêèì îáðàçîì, àêóñòè÷åñêîå âîçìóùåíèå
(Ω, ϕ0, ϕ1), âîçíèêøåå â íà÷àëüíûé ìîìåíò âðåìåíè t = 0 íà ïëîñêîñòè,

                                      209