ВУЗ:
Составители:
Рубрика:
t
∂Σ
at
(y)
at y Ω
(Ω, ϕ
0
, ϕ
1
) R
2
x ∈ R
2
ϕ
0
ϕ
1
z
ϕ
0
ϕ
1
Γ z
S
at
(x
′
) t > t
1
t > t
1
z
Ω B
R
R t > 0
R+at
R+at
D(t) u t = 0 t
1
= R/a
t
2
= 2R/a
D(t
2
)
3R
ϕ
0
ϕ
1
x
1
x
2
1
2
[ϕ
0
(x − at) + ϕ
0
(x + at)]
1
2a
x+at
Z
x−at
ϕ
1
(ξ)dξ
ïðèâîäèò ê ðàñïðîñòðàíåíèþ íà ïëîñêîñòè âîëíû, êîòîðàÿ â êàæäûé ìî- ìåíò âðåìåíè t èìååò ÷åòêî âûðàæåííûé ïåðåäíèé ðîíò, ïðåäñòàâëÿþùèé ñîáîé íåêîòîðóþ çàìêíóòóþ êðèâóþ îãèáàþùóþ îêðóæíîñòåé ∂Σat(y) ðàäèóñà at ñ öåíòðàìè â òî÷êàõ y îáëàñòè Ω, íî, â îòëè÷èå îò ñëó÷àÿ òðåõ èçìåðåíèé, íå èìååò çàäíåãî ðîíòà. Äðóãèìè ñëîâàìè, íà÷àëüíîå âîçìó- ùåíèå (Ω, ϕ0, ϕ1), ëîêàëèçîâàííîå íà ïëîñêîñòè R2 , âûçûâàåò â êàæäîé òî÷êå x ∈ R2 âîçìóùåíèå, êîòîðîå óæå íå ÿâëÿåòñÿ ëîêàëèçîâàííûì ïî âðåìåíè. Ýòî îçíà÷àåò, ÷òî íà ïëîñêîñòè ïðèíöèï þéãåíñà íå âûïîëíÿåò- ñÿ. Ïðè÷èíó ýòîãî ëåãêî ïîíÿòü, åñëè âñïîìíèòü, ÷òî ðàññìàòðèâàåìàÿ ïëîñ- êàÿ çàäà÷à (3.20), (3.21) àêòè÷åñêè ïðåäñòàâëÿåò ñîáîé òðåõìåðíóþ çàäà- ÷ó (3.1), (3.2) ïðè óñëîâèè, ÷òî óíêöèè ϕ0 è ϕ1 íå çàâèñÿò îò z , äëÿ êîòîðîé íîñèòåëè óíêöèé ϕ0 è ϕ1 ðàñïîëîæåíû â öèëèíäðå ñ íàïðàâëÿ- þùåé Γ è îáðàçóþùèìè, ïàðàëëåëüíûìè îñè z . Ïîñêîëüêó ñåðè÷åñêàÿ ïîâåðõíîñòü Sat (x′ ) áóäåò ïåðåñåêàòü ýòîò öèëèíäð ïðè âñåõ t > t1 , òî îáà èíòåãðàëà â èñõîäíîé òðåõìåðíîé îðìóëå Êèðõãîà (3.19) áóäóò, âîîáùå ãîâîðÿ, îòëè÷íû îò íóëÿ äëÿ âñåõ çíà÷åíèé t > t1 . Îòìåòèì òàêæå, ÷òî ïðè òðåõìåðíîé èíòåðïðåòàöèè çàäà÷è (3.20), (3.21) ïåðåäíèé ðîíò, ò.å. âíåøíÿÿ ãðàíèöà íîñèòåëÿ ðåøåíèÿ, èìååò âèä öèëèíäðè÷åñêîé ïîâåðõ- íîñòè ñ ïàðàëëåëüíûìè îñè z îáðàçóþùèìè. Ñ ó÷åòîì ýòîãî íà óíêöèþ (3.24), ÿâëÿþùóþñÿ ðåøåíèåì çàäà÷è (3.20), (3.21), ÷àñòî ññûëàþòñÿ êàê íà öèëèíäðè÷åñêóþ âîëíó (ñì. îá ýòîì ïîäðîáíåå â 2). Ïðèìåð 2. Ïóñòü îáëàñòü Ω â (3.26) åñòü êðóã BR ñ öåíòðîì â íà÷à- ëå êîîðäèíàò ðàäèóñà R. Òîãäà â êàæäûé ìîìåíò âðåìåíè t > 0 ïåðåäíèé ðîíò ïðåäñòàâëÿåò ñîáîé îêðóæíîñòü ðàäèóñà R+at, íîñèòåëü âîëíû èìå- åò âèä ñîîòâåòñòâóþùåãî êðóãà ðàäèóñà R+at, à çàäíèé ðîíò îòñóòñòâóåò. åîìåòðèÿ íîñèòåëÿ D(t) òàêîé âîëíû u â ìîìåíòû t = 0 è t1 = R/a àíàëî- ãè÷íà ãåîìåòðèè íîñèòåëÿ òðåõìåðíîé âîëíû íà ðèñ.3.4à, à ïðè t2 = 2R/a â îòëè÷èå îò òðåõìåðíîãî ñëó÷àÿ, íîñèòåëü D(t2 ) èìååò âèä êðóãà ðàäèóñà 3R, óêàçàííîãî â âèäå çàòåìíåííîé îáëàñòè íà ðèñ.3.4.á. Çàìå÷àíèå 3.2. Àíàëîãè÷íûå ðàññóæäåíèÿ ìîæíî ïðîâåñòè è äëÿ îð- ìóëû Äàëàìáåðà (3.25) â ïðåäïîëîæåíèè, ÷òî íà÷àëüíûå óíêöèè ϕ0 è ϕ1 îòëè÷íû îò íóëÿ íà êîíå÷íîì èíòåðâàëå (x1 ,x2 ) (ñì. òàêæå 1). Íåòðóäíî óáåäèòüñÿ, ÷òî äëÿ ñëàãàåìîãî 1 [ϕ0(x − at) + ϕ0(x + at)] 2 îðìóëû (3.25) èìååò ìåñòî ïðèíöèï þéãåíñà, à âòîðîå ñëàãàåìîå x+at 1 Z ϕ1(ξ)dξ 2a x−at 210
Страницы
- « первая
- ‹ предыдущая
- …
- 208
- 209
- 210
- 211
- 212
- …
- следующая ›
- последняя »