Классические методы математической физики - 212 стр.

UptoLike

Составители: 

t
1
w|
t
1
=0
= 0,
w
t
1
t
1
=0
= f(x, τ)
R
3
.
w
w(x, t
1
, τ) =
1
4πa
Z
S
at
1
(x)
f(y, τ)
at
1
dσ.
f R
4
+
= R
3
×[0, )
x
1
= x, x
2
= y
x
3
= z
f C
0
(R
4
+
),
f
x
i
C
0
(
R
4
+
),
2
f
x
i
x
j
C
0
(
R
4
+
), i, j = 1, 2, 3.
t v
y S
at
1
(x) §3
y = x + a(t τ)n, n = (cosψsinθ, sinψsinθ, cosθ),
= a
2
(t τ)
2
sinθ,
v(x, t, τ) =
1
4πa
Z
S
a(tτ )
(x)
f(y, τ)
a(t τ)
=
t τ
4π
2π
Z
0
π
Z
0
f [x + a(t τ)n, τ] sinθ.
u : R
4
+
R
u(x, t)
t
Z
0
v(x, t, τ),
x, y, z t
u(x, t) =
t
Z
0
v(x, t, τ),
è íà÷àëüíûì óñëîâèÿì ïðè t1 =0, èìåþùèì âèä
                                           ∂w
                          w|t1 =0 = 0,                    = f (x, τ )          â   R3 .              (4.7)
                                           ∂t1    t1 =0

   òàêîì ñëó÷àå óíêöèÿ w ìîæåò áûòü ïðåäñòàâëåíà ñ ïîìîùüþ îð-
ìóëû Êèðõãîà (3.19), ïðèíèìàþùåé â äàííîì ñëó÷àå âèä
                                  1     f (y, τ )
                                     Z
                  w(x, t1, τ ) =                  dσ.        (4.8)
                                 4πa       at1
                                                          Sat1 (x)

Äëÿ ñïðàâåäëèâîñòè ýòîé îðìóëû äîñòàòî÷íî ïðåäïîëîæèòü â ñèëó òåîðå-
ìû 3.1, ÷òî óíêöèÿ f íåïðåðûâíà â çàìêíóòîé îáëàñòè R4+ = R3 × [0, ∞)
âìåñòå ñî âñåìè ïåðâûìè è âòîðûìè ïðîèçâîäíûìè ïî x1 = x, x2 = y è
x3 = z . Óêàçàííûé àêò êðàòêî çàïèøåì â âèäå

            0              ∂f     0       ∂ 2f
     f ∈C       (R4+ ),              4
                               ∈ C (R+),        ∈ C 0(R4+ ), i, j = 1, 2, 3.                         (4.9)
                           ∂xi           ∂xi∂xj
Âîçâðàùàÿñü ê ïåðåìåííûì t è v è ââîäÿ ñåðè÷åñêèå êîîðäèíàòû ïåðå-
ìåííîé òî÷êè y ∈ Sat1 (x) â (4.8) ñ ïîìîùüþ îðìóë (ñì. §3)

                 y = x + a(t − τ )n, n = (cosψsinθ, sinψsinθ, cosθ),
                                                                                                    (4.10)
                              dσ = a2 (t − τ )2 sinθdθdψ,
ïåðåïèøåì (4.8) â âèäå
                                                                     Z2π Zπ
               1                     f (y, τ )      t−τ
                            Z
v(x, t, τ ) =                                  dσ =                           f [x + a(t − τ )n, τ ] sinθdθdψ.
              4πa                    a(t − τ )       4π
                      Sa(t−τ ) (x)                                   0   0
                                                               (4.11)
   Ïîêàæåì òåïåðü, ÷òî óíêöèÿ u : R4+ → R, îïðåäåëÿåìàÿ îðìóëîé

                                                  Zt
                                      u(x, t) ≡        v(x, t, τ )dτ,                               (4.12)
                                                   0

ÿâëÿåòñÿ èñêîìûì ðåøåíèåì çàäà÷è (4.1), (4.3).  ñàìîì äåëå, äèåðåí-
öèðóÿ (4.12) ïî x, y, z è t, èìååì
                                                  Zt
                                     ∆u(x, t) =        ∆v(x, t, τ )dτ,                              (4.13)
                                                   0

                                                    212