Классические методы математической физики - 213 стр.

UptoLike

Составители: 

u(x, t)
t
=
t
Z
0
v(x, t, τ)
t
+ v(x, t, t) =
t
Z
0
v(x, t, τ)
t
.
t
2
u(x, t)
t
2
=
t
Z
0
2
v(x, t, τ)
t
2
+ f(x, t).
v
u
u
v
u(x, t) =
1
4π
t
Z
0
(t τ)
2π
Z
0
π
Z
0
f [x + a(t τ )n, τ] sinθ.
τ
r = a(t τ).
t τ = r/a τ = t (r/a) = (dr/a) r
at 0 τ 0 t
u(x, t) =
1
4πa
2
at
Z
0
2π
Z
0
π
Z
0
f(x + rn, t r/a)
r
r
2
sinθdr.
r
x R
3
y R
3
r = |x y| =
p
(x ξ)
2
+ (y η)
2
+ (z ζ)
2
r 0 at θ, ψ S
1
y
B
at
(x) at x
u(x, t) =
1
4πa
2
Z
B
at
(x)
f(y, t |x y|/a)
|x y|
dy (dy = ).
                      Zt                                           Zt
       ∂u(x, t)            ∂v(x, t, τ )                                 ∂v(x, t, τ )
                =                       dτ + v(x, t, t) =                            dτ.   (4.14)
         ∂t                   ∂t                                           ∂t
                      0                                             0
(Âíåèíòåãðàëüíûé ÷ëåí â (4.14) ðàâåí íóëþ â ñèëó ïåðâîãî óñëîâèÿ â (4.5)).
Äèåðåíöèðóÿ (4.14) ïî t, ïîëó÷èì ñ ó÷åòîì (4.5), ÷òî
                                             Zt
                       ∂ 2u(x, t)                  ∂ 2v(x, t, τ )
                                  =                               dτ + f (x, t).           (4.15)
                          ∂t2                          ∂t2
                                              0

Ïîñêîëüêó v óäîâëåòâîðÿåò îäíîðîäíîìó âîëíîâîìó óðàâíåíèþ (4.4), òî èç
(4.13), (4.15) ñëåäóåò, ÷òî u ÿâëÿåòñÿ ðåøåíèåì íåîäíîðîäíîãî óðàâíåíèÿ
(4.1), à èç (4.12), (4.14) ñëåäóåò, ÷òî u óäîâëåòâîðÿåò îäíîðîäíûì íà÷àëü-
íûì óñëîâèÿì (4.3). Òåì ñàìûì äîêàçàíî, ÷òî óíêöèÿ (4.12) ÿâëÿåòñÿ
èñêîìûì ðåøåíèåì çàäà÷è Êîøè (4.1), (4.3).
   Ïîäñòàâëÿÿ â (4.12) âìåñòî óíêöèè v åå âûðàæåíèå (4.11), ïîëó÷èì
                      Zt                     Z2π Zπ
                  1
     u(x, t) =             (t − τ )dτ                 f [x + a(t − τ )n, τ ] sinθdθdψ.     (4.16)
                 4π
                      0                      0    0

Ââåäåì â (4.16) âìåñòî ïåðåìåííîé èíòåãðèðîâàíèÿ τ íîâóþ ïåðåìåííóþ

                                                 r = a(t − τ ).                            (4.17)

Ó÷èòûâàÿ, ÷òî t − τ = r/a, τ = t − (r/a), dτ = −(dr/a), è ÷òî r ìåíÿåòñÿ
îò at äî 0 ïðè èçìåíåíèè τ îò 0 äî t, îðìóëó (4.16) ìîæíî ïåðåïèñàòü â
âèäå
                             Zat Z2π Zπ
                    1                        f (x + rn, t − r/a) 2
       u(x, t) =                                                r sinθdθdψdr.              (4.18)
                   4πa2                               r
                              0      0   0

Èç (4.10) è (4.17) ñëåäóåò, ÷òî âåëè÷èíà r èìååò ñìûñë ðàññòîÿíèÿ ìåæäó
èêñèðîâàííîé òî÷êîé    x ∈ R3 è ïåðåìåííîé òî÷êîé y ïðîñòðàíñòâà R3 , òàê
÷òî r = |x − y| = (x − ξ)2 + (y − η)2 + (z − ζ)2 . Ïðè ýòîì ïðè èçìåíåíèè
                   p
r îò 0 äî at, à ïàðû (θ, ψ ) ïî åäèíè÷íîé ñåðå S1 òî÷êà y ïðîáåãàåò øàð
Bat (x) ðàäèóñà at ñ öåíòðîì â x. Ñ ó÷åòîì ýòîãî îðìóëó (4.18) ìîæíî
ïåðåïèñàòü â âèäå
                  1        f (y, t − |x − y|/a)
                      Z
       u(x, t) =                                dy (dy = dξdηdζ).   (4.19)
                 4πa2             |x − y|
                           Bat (x)


                                                      213