Классические методы математической физики - 44 стр.

UptoLike

Составители: 

(t
1
, t
2
)
R =
Z
[C(x, t
2
) C(x, t
1
)]dx =
t
2
Z
t
1
dt
Z
C
t
dx.
R = R
1
+ R
2
+ R
3
t
2
Z
t
1
Z
C
t
dxdt =
t
2
Z
t
1
Z
[div (ηgradC) div(Cu) + F
C
] dxdt.
C
t
= div(ηgradC) div(Cu) + F
C
.
η = const u divu = 0
C
t
= ηC u · gra dC + F
C
.
C/∂t = 0
div( ηgradC) div(Cu) = F
C
.
x
C(x, t) γ(x)
(t
1
, t
2
)
R
4
=
t
2
Z
t
1
dt
Z
γ(x)C(x, t)dx.
 ðåçóëüòàòå ïîñòóïëåíèÿ âåùåñòâà â Ω êîíöåíòðàöèÿ åãî èçìåíÿåòñÿ, ïðè-
÷åì èçìåíåíèå êîëè÷åñòâà âåùåñòâà â Ω çà èíòåðâàë (t1 , t2 ) âûðàæàåòñÿ
îðìóëîé
                                                         Zt2
                                                                        ∂C
                    Z                                               Z
               R=       [C(x, t2) − C(x, t1)]dx =              dt          dx.   (4.24)
                                                                        ∂t
                    Ω                                    t1         Ω

 ñèëó çàêîíà ñîõðàíåíèÿ ìàññû äîëæíî âûïîëíÿòüñÿ ñîîòíîøåíèå  óðàâ-
íåíèå áàëàíñà âåùåñòâà: R = R1 + R2 + R3 . Â ïîäðîáíîé çàïèñè îíî èìååò
âèä
     Zt2 Z               Zt2 Z
             ∂C
                dxdt =           [div(ηgradC) − div(Cu) + FC ] dxdt.             (4.25)
             ∂t
     t1 Ω                t1 Ω

Ïðèìåíÿÿ ëåììó 1.1, èç (4.25) ïðèõîäèì ê óðàâíåíèþ
                    ∂C
                       = div(ηgradC) − div(Cu) + FC .                            (4.26)
                    ∂t
Îíî íàçûâàåòñÿ íåñòàöèîíàðíûì óðàâíåíèåì êîíâåêöèè-äèóçèè.  ÷àñò-
íîì ñëó÷àå, êîãäà η = const, à âåêòîð u óäîâëåòâîðÿåò óñëîâèþ divu = 0,
óðàâíåíèå (4.26) ìîæíî ïåðåïèñàòü â âèäå
                         ∂C
                            = η∆C − u · gradC + FC .                             (4.27)
                         ∂t
Åñëè æå ðàññìàòðèâàåìûé ïðîöåññ ïåðåíîñà (êîíâåêöèè-äèóçèè) âåùå-
ñòâà ÿâëÿåòñÿ ñòàöèîíàðíûì, òàê ÷òî ∂C/∂t = 0, òî (4.26) ïðèíèìàåò âèä

                        div(ηgradC) − div(Cu) = −FC .                            (4.28)

   àñïðîñòðàíåíèå âåùåñòâà â íåêîòîðûõ ñðåäàõ ñîïðîâîæäàåòñÿ õèìè÷å-
ñêîé ðåàêöèåé âçàèìîäåéñòâèÿ äèóíäèðóþùåãî âåùåñòâà ñ âåùåñòâîì
îñíîâíîé ñðåäû. Ýòî ïðèâîäèò ê ïîãëîùåíèþ âåùåñòâà, ïðè÷åì ñêîðîñòü
ïîãëîùåíèÿ â êàæäîé òî÷êå x ∈ Ω ìîæíî ñ÷èòàòü ïðîïîðöèîíàëüíîé êîí-
öåíòðàöèè C(x, t) ñ íåêîòîðûì êîýèöèåíòîì γ(x). Âñëåäñòâèå ÿâëåíèÿ
ïîãëîùåíèÿ, êîëè÷åñòâî äèóíäèðóþùåãî âåùåñòâà â ðàññìàòðèâàåìîé
îáëàñòè Ω óìåíüøàåòñÿ çà ïðîìåæóòîê (t1 , t2 ) íà âåëè÷èíó
                                  Zt2        Z
                          R4 =          dt       γ(x)C(x, t)dx.                  (4.29)
                                  t1         Ω


                                                 44