ВУЗ:
Составители:
Рубрика:
µ∆u.
∆u
∆u = ∆ui + ∆vj + ∆wk
µ
· µ
x ∈ D
ρ
∂u
∂t
+ ρ(u · ∇)u = −∇p + µ∆u + ρf,
M
1
M
5
M
6
M
7
ρ
∂u
∂t
+ ρ(u · ∇)u = −∇p + µ∆u + ρf,
∂ρ
∂t
+ div( ρu) = 0, p = P (ρ),
 çàêëþ÷åíèå îòìåòèì, ÷òî âñå ïÿòü ïîñòðîåííûõ ìîäåëåé ñîäåðæàò
äèåðåíöèàëüíûå óðàâíåíèÿ ëèøü ïåðâîãî ïîðÿäêà. Ýòî íå ñëó÷àéíî,
ïîñêîëüêó ïðè èõ âûâîäå ìû ïðåíåáðåãàëè äåéñòâèåì ýåêòîâ âÿçêîñòè,
òåïëîïðîâîäíîñòè è õèìè÷åñêèõ ðåàêöèé, êîòîðûå îïèñûâàþòñÿ âûðàæå-
íèÿìè, ñîäåðæàùèìè ïðîèçâîäíûå âòîðîãî è áîëåå âûñîêîãî ïîðÿäêà îò
èñêîìûõ óíêöèé. Òàêèì îáðàçîì, âñå ïîñòðîåííûå â ï. 5.3 ìîäåëè îòíî-
ñÿòñÿ ê èäåàëüíîé æèäêîñòè, â êîòîðîé âíóòðåííèå ñèëû ñîñòîÿò èç ñèë
äàâëåíèÿ. Â ýòîì ñìûñëå âñå óêàçàííûå ìîäåëè îïèñûâàþò èäåàëüíûé ãèä-
ðîäèíàìè÷åñêèé ïðîöåññ (ñð. ñ ï. 1 1).
5.4. Ìîäåëè äâèæåíèÿ âÿçêîé æèäêîñòè. Ìîäåëè èäåàëüíîé æèä-
êîñòè ÿâëÿþòñÿ âåñüìà ïðèáëèæåííûìè, ïîñêîëüêó â ðåàëüíûõ æèäêîñòÿõ
âñåãäà ïðèñóòñòâóåò òðåíèå, âûçûâàåìîå íàëè÷èåì âÿçêîñòè â æèäêîñòè.
Íàëè÷èå âÿçêîñòè â æèäêîñòè ïðèâîäèò ê âîçíèêíîâåíèþ äîïîëíèòåëü-
íîé âíóòðåíåé ñèëû (ïðåïÿòñòâóþùåé äâèæåíèþ æèäêîñòè). Åå îáú¼ìíàÿ
ïëîòíîñòü ÷àñòî ìîäåëèðóåòñÿ âûðàæåíèåì [40℄:
µ∆u. (5.22)
Çäåñü ∆u âåêòîðíûé ëàïëàñèàí îò ñêîðîñòè u, îïðåäåëÿåìûé, â ÷àñòíî-
ñòè, â äåêàðòîâîé ñèñòåìå êîîðäèíàò îðìóëîé ∆u = ∆ui + ∆vj + ∆wk,
µ ïîñòîÿííûé êîýèöèåíò äèíàìè÷åñêîé âÿçêîñòè, èìåþùèé ðàçìåð-
íîñòü êã/ì·ñåê.  îáùåì ñëó÷àå êîýèöèåíò µ ìîæåò çàâèñåòü êàê îò
òî÷åê x ∈ D, òàê è îò íåêîòîðûõ õàðàêòåðèñòèê ñðåäû, íàïðèìåð, òåìïå-
ðàòóðû, ïðè÷åì âûðàæåíèå äëÿ ñèëû âÿçêîãî òðåíèÿ èìååò áîëåå ñëîæíûé
âèä, ÷åì â (5.22) (ñì., íàïðèìåð, [40℄). Îäíàêî ðàññìîòðåíèå áîëåå ñëîæ-
íûõ ìîäåëåé âûõîäèò çà ðàìêè äàííîé êíèãè. Äîáàâèâ âûðàæåíèå (5.22) â
ïðàâóþ ÷àñòü îñíîâíîãî óðàâíåíèÿ äâèæåíèÿ èäåàëüíîé æèäêîñòè (5.14),
ïðèõîäèì ê óðàâíåíèþ
∂u
ρ + ρ(u · ∇)u = −∇p + µ∆u + ρf, (5.23)
∂t
ïðåäñòàâëÿþùåìó ñîáîé îñíîâíîå óðàâíåíèå äâèæåíèÿ âÿçêîé æèäêîñòè.
Îíî íàçûâàåòñÿ âåêòîðíûì óðàâíåíèåì Íàâüå-Ñòîêñà â ÷åñòü ðàíöóç-
ñêîãî èíæåíåðà A. Navier (17851836) è àíãëèéñêîãî èçèêà G.G. Stokes
(18191903), ìíîãî ñäåëàâøèõ äëÿ ñòàíîâëåíèÿ è ðàçâèòèÿ ãèäðîäèíàìèêè
âÿçêîé æèäêîñòè.
Çàìåíèâ â ìîäåëÿõ M1 è M5 èäåàëüíûõ æèäêîñòåé óðàâíåíèå äâèæåíèÿ
èäåàëüíîé æèäêîñòè (5.14) óðàâíåíèåì (5.23), ìû ïîëó÷èì åùå äâå ìàòå-
ìàòè÷åñêèå ìîäåëè, îïèñûâàþùèå äâèæåíèå âÿçêîé æèäêîñòè: ìîäåëü M6
âÿçêîé áàðîòðîïíîé æèäêîñòè è ìîäåëü M7 âÿçêîé íåñæèìàåìîé îäíîðîä-
íîé æèäêîñòè. Îíè îïèñûâàþòñÿ ñîîòâåòñòâåííî óðàâíåíèÿìè
∂u ∂ρ
ρ + ρ(u · ∇)u = −∇p + µ∆u + ρf, + div(ρu) = 0, p = P (ρ),
∂t ∂t
53
Страницы
- « первая
- ‹ предыдущая
- …
- 51
- 52
- 53
- 54
- 55
- …
- следующая ›
- последняя »
