Классические методы математической физики. Алексеев Г.В. - 128 стр.

UptoLike

Составители: 

|coskϕ| 1 |sinkϕ| 1
ρ
0
M
2
+ 2M
X
k
ρ
0
a
k
,
2M
a
X
k
k
ρ
0
a
(k1)
,
2M
a
2
X
k
k(k 1)
ρ
0
a
(k2)
,
2M
X
k
k
ρ
0
a
k
, 2M
X
k
k
2
ρ
0
a
k
.
ρ ϕ ρ < a
|α
0
| + Σ
k=1
(|α
k
| + |β
k
|),
|u
k
(ρ, ϕ)| |α
k
| + |β
k
| k = 1, 2, ...
(i)
g [0, 2π] g
˜α
k
˜
β
k
g
α
k
β
k
g
˜α
k
1
π
2π
Z
0
g
(ϕ)coskϕdϕ = k
1
π
2π
Z
0
g(ϕ)sinkϕdϕ = kβ
k
, k = 1, 2, ...,
˜
β
k
1
π
2π
Z
0
g
(ϕ)sinkϕdϕ = k
1
π
2π
Z
0
g(ϕ) cos kϕdϕ = kα
k
, k = 1, 2, ... .
|α
k
| + |β
k
| = (|˜α
k
| + |
˜
β
k
|)/k
X
k=1
(
|˜α
k
|
k
+
|
˜
β
k
|
k
)
.
|˜α
k
|
k
1
2
˜α
2
k
+
1
k
2
,
|
˜
β
k
|
k
1
2
˜
β
2
k
+
1
k
2
Ó÷èòûâàÿ (4.26) è íåðàâåíñòâà |coskϕ| ≤ 1, |sinkϕ| ≤ 1, âûâîäèì, ÷òî
ðÿäû (4.23) è (4.25) ìàæîðèðóþòñÿ â êðóãå Ωρ0 ñîîòâåòñòâåííî ÷èñëîâûìè
ðÿäàìè
 M       X  ρ0 k     2M X  ρ0 (k−1)    2M X              ρ (k−2)
                                                               0
   + 2M              ,       k          ,    2
                                                   k(k − 1)            ,
 2              a       a       a           a                 a
                k                         k                              k
                                 X  ρ0 k      X  ρ0 k
                              2M  k        , 2M  k2       .
                                     a              a
                                   k                            k
Ñõîäèìîñòü èõ ëåãêî ñëåäóåò èç ïðèçíàêà Äàëàìáåðà. Îòñþäà âûòåêàåò,
÷òî ðÿä (4.23) èìååò íåïðåðûâíûå ïðîèçâîäíûå ïåðâîãî è âòîðîãî ïîðÿä-
êîâ ïî ρ è ϕ è óäîâëåòâîðÿåò óðàâíåíèþ (4.1) ïðè ρ < a, ò. å. ÿâëÿåòñÿ
ãàðìîíè÷åñêîé â Ω óíêöèåé. Îñòàëîñü äîêàçàòü ðàâíîìåðíóþ ñõîäèìîñòü
ðÿäà (4.23) â çàìêíóòîì êðóãå Ω. Äëÿ ýòîãî äîñòàòî÷íî äîêàçàòü ñõîäè-
ìîñòü ÷èñëîâîãî ðÿäà
                                       |α0 | + Σ∞
                                                k=1 (|αk | + |βk |),                        (4.27)
êîòîðûé ÿâëÿåòñÿ ìàæîðèðóþùèì â çàìêíóòîì êðóãå Ω äëÿ ðÿäà (4.23),
ïîñêîëüêó |uk (ρ, ϕ)| ≤ |αk | + |βk | â Ω, k = 1, 2, ... . Ïðåäïîëîæèì, ÷òî â
äîïîëíåíèå ê óñëîâèÿì (i) âûïîëíÿåòñÿ óñëîâèå:
   (ii) óíêöèÿ g èìååò íà [0, 2π] êóñî÷íî-íåïðåðûâíóþ ïðîèçâîäíóþ g ′ .
   Ëåãêî ïðîâåðèòü, èíòåãðèðóÿ ïî ÷àñòÿì, ÷òî êîýèöèåíòû Ôóðüå α̃k
è β̃k óíêöèè g ′ ñâÿçàíû ñ êîýèöèåíòàìè Ôóðüå αk è βk óíêöèè g
îðìóëàìè
                    Z2π                              Z2π
           1                                 1
     α̃k ≡                g ′ (ϕ)coskϕdϕ = k               g(ϕ)sinkϕdϕ = kβk , k = 1, 2, ...,
           π                                 π
                    0                                0

            Z2π                                 Z2π
        1                               1
  β̃k ≡             g ′ (ϕ)sinkϕdϕ = −k                  g(ϕ) cos kϕdϕ = −kαk , k = 1, 2, ... .
        π                               π
            0                                    0

Îòñþäà ñëåäóåò, ÷òî |αk | + |βk | = (|α̃k | + |β̃k |)/k è äëÿ äîêàçàòåëüñòâà
ñõîäèìîñòè ðÿäà (4.27) äîñòàòî÷íî äîêàçàòü ñõîäèìîñòü ðÿäà
                            ∞
                               (                )
                           X      |α̃k | |β̃k |
                                        +         .                    (4.28)
                                    k      k
                                         k=1

Íî ñõîäèìîñòü ðÿäà (4.28) ñëåäóåò èç ýëåìåíòàðíûõ íåðàâåíñòâ
                                                          
               |α̃k |   1          1   |β̃k |   1          1
                      ≤     α̃k2 + 2 ,        ≤     β̃k2 + 2
                 k      2         k      k      2         k
                                                         128