ВУЗ:
Составители:
Рубрика:
∞
X
k=1
[T
′′
k
(t) + ω
2
k
T
k
(t)]sin
kπx
l
= f(x, t),
ω
k
= kπa/l f
(0, l)
f(x, t) =
∞
X
k=1
f
k
(t)sin
kπx
l
.
f
k
(t) t
f
k
(t) =
2
l
l
Z
0
f(x, t)sin
kπx
l
dx.
f sin(kπx/l)
T
′′
k
(t) + ω
2
k
T
k
(t) = f
k
(t), k = 1, 2, ... .
k = 1, 2, ...
T
k
T
k
T
k
(0) = 0, T
′
k
(0) = 0, k = 1, 2, ... .
T
k
(t) =
1
ω
k
t
Z
0
f
k
(τ)sinω
k
(t − τ)dτ
f
k
(τ)
T
k
(t) =
2
lω
k
t
Z
0
[sinω
k
(t − τ)
l
Z
0
f(x, τ)sin
kπx
l
dx]dτ.
(1.35) è îáîèì íà÷àëüíûì óñëîâèÿì â (1.37). Ïîäñòàâëÿÿ (1.41) â (1.35) è
ðàññóæäàÿ îðìàëüíî, ïîëó÷èì
∞
X kπx
[Tk′′(t) + ωk2Tk (t)]sin = f (x, t), (1.42)
l
k=1
ãäå ωk = kπa/l. Ïðåäïîëîæèì, ÷òî óíêöèþ f ìîæíî ðàçëîæèòü â ðÿä
Ôóðüå ïî ñèíóñàì (1.11) â èíòåðâàëå (0, l):
∞
X kπx
f (x, t) = fk (t)sin . (1.43)
l
k=1
Çäåñü êîýèöèåíòû fk (t), çàâèñÿùèå îò t êàê îò ïàðàìåòðà, îïðåäåëÿþòñÿ
àíàëîãè÷íî (1.17) îðìóëîé
Zl
2 kπx
fk (t) = f (x, t)sin dx. (1.44)
l l
0
Ñîîòíîøåíèÿ (1.42) è (1.43) àêòè÷åñêè ïðåäñòàâëÿþò ñîáîé ðàçëîæå-
íèÿ îäíîé è òîé æå óíêöèè f â ðÿä Ôóðüå ïî ñèíóñàì sin(kπx/l). Ïðè-
ðàâíèâàÿ ñîîòâåòñòâóþùèå êîýèöèåíòû îáîèõ ðàçëîæåíèé, ïðèõîäèì ê
ðàâåíñòâàì
Tk′′ (t) + ωk2 Tk (t) = fk (t), k = 1, 2, ... . (1.45)
Ïðè êàæäîì k = 1, 2, ... (1.45) ïðåäñòàâëÿåò ñîáîé äèåðåíöèàëüíîå
óðàâíåíèå âòîðîãî ïîðÿäêà îòíîñèòåëüíî óíêöèè Tk . ×òîáû îäíîçíà÷íî
îïðåäåëèòü Tk , çàäàäèì ñ ó÷åòîì îäíîðîäíîñòè íà÷àëüíûõ óñëîâèé â (1.37)
íà÷àëüíûå óñëîâèÿ
Tk (0) = 0, Tk′ (0) = 0, k = 1, 2, ... . (1.46)
åøåíèå óðàâíåíèÿ (1.45) ïðè íà÷àëüíûõ óñëîâèÿõ (1.46) èìååò âèä
Zt
1
Tk (t) = fk (τ )sinωk (t − τ )dτ (1.47)
ωk
0
èëè (ïîñëå ïîäñòàíîâêè âìåñòî fk (τ ) èõ âûðàæåíèé èç (1.44))
Zt Zl
2 kπx
Tk (t) = [sinωk (t − τ ) f (x, τ )sin dx]dτ. (1.48)
lωk l
0 0
15
Страницы
- « первая
- ‹ предыдущая
- …
- 13
- 14
- 15
- 16
- 17
- …
- следующая ›
- последняя »
