Классические методы математической физики. Алексеев Г.В. - 154 стр.

UptoLike

Составители: 

u(x)
x
i
=
1
4π
Z
x
i
1
|x y|
ρ(y)dy =
1
4π
Z
x
i
y
i
|x y|
3
ρ(y)dy, i = 1, 2, 3,
x
u
e
x
x = (x
1
, x
2
, x
3
)
x
= (x
1
+x
1
, x
2
, x
3
) x
x
1
u(x
)
x
1
=
u(x
) u(x)
x
1
α =
x
1
u(x)
x
1
1
4π
Z
y
1
x
1
|x y|
3
ρ(y)dy.
α x
1
0
ε > 0 B
δ
(x)
δ = δ(ε)
u(x) = u
1
(x) + u
2
(x)
1
4π
Z
B
δ
(x)
ρ(y)
|x y|
dy +
1
4π
Z
\
B
δ
(x)
ρ(y)
|x y|
dy ,
u(x
) = u
1
(x
) + u
2
(x
) =
1
4π
Z
B
δ
(x)
ρ(y)
|x
y|
dy +
1
4π
Z
\
B
δ
(x)
ρ(y)
|x
y|
dy .
α =
u
1
(x
) u
1
(x)
x
1
1
4π
Z
B
δ
(x)
y
1
x
1
|x y|
3
ρ(y)dy
+
+
u
2
(x
) u
2
(x)
x
1
1
4π
Z
\
B
δ
(x)
y
1
x
1
|x y|
3
ρ(y)dy
.
 ñëó÷àå òðåõ èçìåðåíèé îðìóëà (1.10) ïåðåõîäèò â îðìóëó
  ∂u(x)     1    ∂     1                1    xi − yi
              Z                           Z
        =                   ρ(y)dy = −               ρ(y)dy, i = 1, 2, 3,
    ∂xi    4π   ∂xi |x − y|            4π   |x − y|3
               Ω                                      Ω
                                                                                        (1.11)
äîêàçàííóþ ⠟ 1 ãë. 6 â ñëó÷àå, êîãäà x ëåæèò âíå Ω.
    ñèëó àíàëèòè÷íîñòè ïîòåíöèàëà u â Ωe äîñòàòî÷íî äîêàçàòü (1.10) â
ñëó÷àå, êîãäà x ∈ Ω. àññìàòðèâàÿ äëÿ êîíêðåòíîñòè è íàãëÿäíîñòè ñëó÷àé
òðåõ èçìåðåíèé, âîçüìåì ïðîèçâîëüíóþ òî÷êó x = (x1, x2 , x3 ) ∈ Ω è ââåäåì
òî÷êó x′ = (x1 + ∆x1 , x2, x3 ). Ïðåäïîëàãàÿ, ÷òî x′ ∈ Ω, ñîñòàâèì îòíîøåíèå

                            ∆x1 u(x′) u(x′) − u(x)
                                     =
                             ∆x1          ∆x1
è ðàññìîòðèì ðàçíîñòü
                      ∆x1 u(x)    1                  y1 − x1
                                            Z
                   α=          −                             ρ(y)dy.                    (1.12)
                       ∆x1       4π                 |x − y|3
                                            Ω

Äîêàæåì, ÷òî α ñòðåìèòñÿ ê íóëþ ïðè ∆x1 → 0.
   Çàäàäèì ε > 0 è îáîçíà÷èì ÷åðåç Bδ (x) øàð äîñòàòî÷íî ìàëîãî ðàäèóñà
δ = δ(ε). Ïîëîæèì
                           1       ρ(y)        1        ρ(y)
                             Z                     Z
  u(x) = u1 (x) + u2(x) ≡                dy +                  dy, (1.13)
                          4π     |x − y|      4π       |x − y|
                              Bδ (x)∩Ω                        Ω\B δ (x)

                             1                ρ(y)         1                     ρ(y)
                                     Z                                 Z
      ′        ′        ′
  u(x ) = u1(x ) + u2(x ) =                          dy +                               dy.
                            4π              |x′ − y|      4π                   |x′ − y|
                                 Bδ (x)∩Ω                          Ω\B δ (x)

  Ñ ó÷åòîì (1.13) ðàçíîñòü (1.12) ìîæíî ïåðåïèñàòü â âèäå
                                                          
              u1(x′ ) − u1 (x)
                              
                                  1         y1 − x1
                                       Z
        α=                       −                  ρ(y)dy +
                                                           
                    ∆x1             4π      |x − y|3
                                                Bδ (x)∩Ω
                                                                          
               u2(x′) − u2(x)    1                     y1 − x1
                                                Z
             +                −                                ρ(y)dy .               (1.14)
                                                                       
                     ∆x1         4π                    |x − y|3
                                         Ω\B δ (x)

   Îöåíèì êàæäîå èç òðåõ ñëàãàåìûõ â (1.14). ßñíî â ñèëó ðàâíîìåðíîé
ñõîäèìîñòè èíòåãðàëà â ïðàâîé ÷àñòè (1.11), âûòåêàþùåé èç ëåììû 1.4

                                         154