ВУЗ:
Составители:
Рубрика:
α Ω
K Ω
Ω
e
C
m,α
(Ω
e
)
C
m
(Ω
e
) f m
α
Ω
e
∩ B
R
Ω
e
= Ω
e
∪ Γ B
R
R
C
m,α
(Ω
e
)
C
m
(Ω
e
) f m
α Ω
e
K ⊂ Ω
e
u Ω Ω
e
u Ω Ω
e
u
+
= u|
Ω
u
−
= u|
Ω
e
Ω
′
Ω Ω
′
⊂⊂ Ω Ω
′
⊂ Ω
′
ρ ∈ C
α
(Ω) 0 < α < 1
′
u
+
∈ C
2,α
(Ω)
u
−
∈ C
2,α
(Ω
e
) Ω
′
⊂⊂ Ω
kuk
C
2,α
(
Ω
′
)
≤ Ckρk
C
α
(Ω)
.
C Ω
′
n α ρ
C
2,α
u
Ω
Ω
′
Γ
u
′
Γ
u
Γ
Ω Ω
e
Ω Ω
e
n = 2 Γ
C
l,λ
l ∈ N 0 ≤ λ ≤ 1
B
r
(x
0
) x
0
∈ Γ F
x
0
(x) = 0
F
x
0
∈ C
l,λ
(B
r
(x
0
)) l ≥ 1 gradF
x
0
6= 0
êîòîðûå óäîâëåòâîðÿþò óñëîâèþ åëüäåðà ñ ïîêàçàòåëåì α ëîêàëüíî â Ω, ò. å. íà ëþáîì êîìïàêòå K , öåëèêîì ëåæàùåì â Ω.  ñëó÷àå íåîãðàíè÷åí- íîé îáëàñòè Ωe ïîä C m,α (Ωe ) áóäåì ïîíèìàòü ïîäïðîñòðàíñòâî ïðîñòðàí- ñòâà C m(Ωe ), ââåäåííîãî â ï. 3.2 ãë. 6, ñîñòîÿùåå èç óíêöèé f , âñå m-å ïðîèçâîäíûå êîòîðûõ óäîâëåòâîðÿþò óñëîâèþ åëüäåðà ñ ïîêàçàòåëåì α â îáëàñòè âèäà Ωe ∩ BR , ãäå Ωe = Ωe ∪ Γ, à BR øàð ëþáîãî ðàäèóñà R. Òî÷íî òàê æå ïîä C m,α (Ωe) áóäåì ïîíèìàòü ïîäïðîñòðàíñòâî ïðîñòðàíñòâà C m(Ωe), ñîñòîÿùåå èç óíêöèé f , âñå m-ûå ïðîèçâîäíûå êîòîðûõ óäîâëå- òâîðÿþò óñëîâèþ åëüäåðà ñ ïîêàçàòåëåì α ëîêàëüíî â Ωe, ò. å. íà ëþáîì êîìïàêòå K ⊂ Ωe . Ìû óæå çíàåì, ÷òî ñâîéñòâà ïîòåíöèàëà u â îáëàñòÿõ Ω è Ωe ñèëüíî îòëè÷àþòñÿ ìåæäó ñîáîé. Ñ ó÷åòîì ýòîãî ââåäåì ñïåöèàëüíûå îáîçíà÷å- íèÿ äëÿ ñóæåíèé u íà Ω è Ωe: u+ = u|Ω , u− = u|Ωe . Áóäåì ãîâîðèòü, ÷òî îòêðûòîå ìíîæåñòâî Ω′ ÿâëÿåòñÿ ñòðîãî âíóòðåííèì ïîäìíîæåñòâîì ìíî- æåñòâà Ω, è ïèñàòü Ω′ ⊂⊂ Ω, åñëè Ω′ ⊂ Ω. Ïðåäïîëîæèì, ÷òî âìåñòî (iii) âûïîëíÿåòñÿ óñëîâèå (iii′) ρ ∈ C α (Ω), 0 < α < 1. Èñïîëüçóÿ ââåäåííûå ïðîñòðàíñòâà, ñîðìóëèðóåì ñëåäóþùèé ðåçóëüòàò. Ëåììà 1.3. Ïóñòü âûïîëíÿþòñÿ óñëîâèÿ (i), (iii′ ). Òîãäà u+ ∈ C 2,α(Ω), u− ∈ C 2,α (Ωe) è äëÿ ëþáîãî îòêðûòîãî ïîäìíîæåñòâà Ω′ ⊂⊂ Ω ñïðàâåä- ëèâà àïðèîðíàÿ îöåíêà kukC 2,α (Ω′ ) ≤ CkρkC α (Ω) . (1.30) Çäåñü C êîíñòàíòà, çàâèñÿùàÿ îò Ω′ , n è α, íî íå çàâèñÿùàÿ îò ρ. Îòìåòèì äâå îñîáåííîñòè îöåíêè (1.30). Âî-ïåðâûõ, îíà íîñèò ëîêàëü- íûé õàðàêòåð â òîì ñìûñëå, ÷òî â ëåâîé ÷àñòè C 2,α - íîðìà ïîòåíöèàëà u áåðåòñÿ íå ïî âñåé îáëàñòè Ω, à ëèøü ïî åå ñòðîãî âíóòðåííåé ïîäîáëàñòè Ω′ . Ýòî ñâÿçàíî ñ òåì, ÷òî â îðìóëèðîâêå ëåììû 1.3 íå ââîäèòñÿ êàêèõ- ëèáî ïðåäïîëîæåíèé î ãëàäêîñòè ãðàíèöû Γ, êîòîðàÿ â îáùåì ñëó÷àå ìî- æåò áûòü âåñüìà íåðåãóëÿðíîé. Ïîñëåäíåå îïðåäåëÿåò ïîâåäåíèå ðåøåíèÿ u âáëèçè ãðàíèöû, êîòîðîå òàêæå ìîæåò áûòü äîñòàòî÷íî íåðåãóëÿðíûì. Îäíàêî â òîì ñëó÷àå, êîãäà â äîïîëíåíèå ê óñëîâèþ (iii′) ãðàíèöà Γ îáëà- äàåò îïðåäåëåííîé ðåãóëÿðíîñòüþ, ïîòåíöèàë u òàêæå áóäåò ðåãóëÿðíûì â îêðåñòíîñòè ãðàíèöû Γ â òîì ñìûñëå, ÷òî âòîðûå ïðîèçâîäíûå ïîòåíöèàëà, ñóùåñòâóþùèå êàê â Ω, òàê è Ωe, äîïóñêàþò íåïðåðûâíûå ïðîäîëæåíèÿ êàê íà Ω, òàê è íà Ωe . Ïðè ýòîì îöåíêà (1.30) ïåðåõîäèò â ñîîòâåòñòâóþùóþ ãëîáàëüíóþ îöåíêó (ñì. íèæå (1.31)). Áîëåå êîíêðåòíî: áóäåì ãîâîðèòü, ÷òî ïîâåðõíîñòü (êðèâàÿ ïðè n = 2) Γ ïðèíàäëåæèò êëàññó C l,λ, l ∈ N, 0 ≤ λ ≤ 1, åñëè â íåêîòîðîé îêðåñòíîñòè Br (x0) êàæäîé òî÷êè x0 ∈ Γ îíà îïèñûâàåòñÿ óðàâíåíèåì Fx0 (x) = 0, ãäå Fx0 ∈ C l,λ(Br (x0)) è ïðè l ≥ 1 gradFx0 6= 0 (ñðàâíèòå ýòî îïðåäåëåíèå ñ îïðåäåëåíèåì â 2 ãë. 6). Ñïðàâåäëèâ ñëåäóþùèé ðåçóëüòàò: 160
Страницы
- « первая
- ‹ предыдущая
- …
- 158
- 159
- 160
- 161
- 162
- …
- следующая ›
- последняя »