ВУЗ:
Составители:
Рубрика:
n ≥ 3
Γ Ω µ
S
x ∈ Γ
n = n(x) r
0
> 0
x ∈ Γ Γ∪B
r
0
(x) Γ∪B
r
0
(x)
x Γ
n
x
λ ≤ 1 Γ
λ ≤ 1 C > 0
|n(x) − n(y)| ≤ C|x − y|
λ
∀x, y ∈ Γ.
C
1
C
2
λ ≤ 1
˜
C
1,λ
C
2
⊂
˜
C
1,λ
⊂ C
1
λ ≤ 1
Ω R
n
Γ
˜
C
1,λ
0 < λ < 1
µ ∈ C(Γ)
x ∈ R
n
x ∈ Γ
u(x) = O(|x|
1−n
) |x| → ∞.
R
n
\ Γ u
u ∈ C
∞
(R
n
\ Γ)
x
2.4. Îáçîð äîïîëíèòåëüíûõ ñâîéñòâ ïîòåíöèàëîâ ïðîñòîãî è
äâîéíîãî ñëîÿ. Óñòàíîâëåííûå âûøå ñâîéñòâà ïîòåíöèàëà äâîéíîãî ñëîÿ
(2.3), îïèñûâàåìûå ëåììàìè 2.1, 2.2 è òåîðåìîé 2.1, è ïîòåíöèàëà ïðîñòî-
ãî ñëîÿ (2.34), îïèñûâàåìûå ëåììîé 2.3 è òåîðåìîé 2.2, ñïðàâåäëèâû è â
ñëó÷àå n ≥ 3 èçìåðåíèé, ïðè÷åì ïðè áîëåå ñëàáûõ ïðåäïîëîæåíèÿõ îò-
íîñèòåëüíî ãëàäêîñòè ãðàíèöû Γ îáëàñòè Ω è ïëîòíîñòè µ. Îãðàíè÷èìñÿ
çäåñü ïðèâåäåíèåì îðìóëèðîâîê ñîîòâåòñòâóþùèõ óòâåðæäåíèé. Äîêàçà-
òåëüñòâà ìîæíî íàéòè, íàïðèìåð, â [35℄. Ïðåäâàðèòåëüíî ââåäåì ïîíÿòèå
ïîâåðõíîñòè Ëÿïóíîâà.
îâîðÿò, ÷òî çàìêíóòàÿ îãðàíè÷åííàÿ ïîâåðõíîñòü S ÿâëÿåòñÿ ïîâåðõ-
íîñòüþ Ëÿïóíîâà, åñëè îíà óäîâëåòâîðÿåò ñëåäóþùèì óñëîâèÿì:
1) â êàæäîé òî÷êå x ∈ Γ ñóùåñòâóåò êàñàòåëüíàÿ ïëîñêîñòü è, ñëåäî-
âàòåëüíî, íîðìàëü n = n(x); 2) ñóùåñòâóåò òàêîå ÷èñëî r0 > 0, ÷òî äëÿ
ëþáîé òî÷êè x ∈ Γ ìíîæåñòâî Γ ∪ Br0 (x) ñâÿçíî, òàê ÷òî Γ ∪ Br0 (x) ÿâëÿåò-
ñÿ îêðåñòíîñòüþ òî÷êè x íà ïîâåðõíîñòè Γ, è îíî ïåðåñåêàåòñÿ ïðÿìûìè,
ïàðàëëåëüíûìè íîðìàëè nx , íå áîëåå, ÷åì â îäíîé òî÷êå; 3) ïîëå íîðìà-
ëåé íåïðåðûâíî ïî åëüäåðó ñ íåêîòîðûì ïîêàçàòåëåì λ ≤ 1 íà Γ, ò. å.
ñóùåñòâóþò ÷èñëà λ ≤ 1 è C > 0 òàêèå, ÷òî
|n(x) − n(y)| ≤ C|x − y|λ ∀x, y ∈ Γ. (2.43)
Èç ïðèâåäåííîãî îïðåäåëåíèÿ âûòåêàåò, ÷òî ïîâåðõíîñòè Ëÿïóíîâà ïðè-
íàäëåæàò êëàññó C 1 . Ñ äðóãîé ñòîðîíû, âñÿêàÿ îãðàíè÷åííàÿ çàìêíóòàÿ
ïîâåðõíîñòü êëàññà C 2 ÿâëÿåòñÿ ïîâåðõíîñòüþ Ëÿïóíîâà ïðè λ ≤ 1. Òàêèì
îáðàçîì, åñëè îáîçíà÷èòü äëÿ êðàòêîñòè êëàññ ïîâåðõíîñòåé Ëÿïóíîâà ÷å-
ðåç C̃ 1,λ, òî ñïðàâåäëèâà ñëåäóþùàÿ öåïî÷êà âëîæåíèé: C 2 ⊂ C̃ 1,λ ⊂ C 1
ïðè λ ≤ 1.
Òåïåðü ìû â ñîñòîÿíèè ñîðìóëèðîâàòü òåîðåìû îá îñíîâíûõ ñâîéñòâàõ
ïîòåíöèàëîâ ïðîñòîãî è äâîéíîãî ñëîÿ. Ïóñòü âûïîëíÿþòñÿ ñëåäóþùèå
óñëîâèÿ:
(j) Ω îãðàíè÷åííîå îòêðûòîå ìíîæåñòâî ïðîñòðàíñòâà Rn , ãðàíèöà Γ
êîòîðîé ÿâëÿåòñÿ ïîâåðõíîñòüþ Ëÿïóíîâà èç êëàññà C̃ 1,λ , 0 < λ < 1; (jj)
µ ∈ C(Γ).
Òåîðåìà 2.3. Ïóñòü âûïîëíÿþòñÿ óñëîâèÿ (j), (jj). Òîãäà:
1) Ïîòåíöèàë äâîéíîãî ñëîÿ è îïðåäåëåí äëÿ âñåõ x ∈ Rn è, â ÷àñòíî-
ñòè, äëÿ x ∈ Γ è óäîâëåòâîðÿåò óñëîâèþ íà áåñêîíå÷íîñòè, èìåþùåìó
âèä
u(x) = O(|x|1−n ) ïðè |x| → ∞. (2.44)
2) Âñþäó â Rn \ Γ ïîòåíöèàë äâîéíîãî ñëîÿ u èìååò ïðîèçâîäíûå âñåõ
ïîðÿäêîâ (ò. å. u ∈ C ∞(Rn \ Γ)) è óäîâëåòâîðÿåò óðàâíåíèþ Ëàïëàñà,
ïðè÷åì ïðîèçâîäíûå ïî êîîðäèíàòàì òî÷êè x ìîæíî âû÷èñëÿòü äèå-
ðåíöèðîâàíèåì ïîä çíàêîì èíòåãðàëà.
173
Страницы
- « первая
- ‹ предыдущая
- …
- 171
- 172
- 173
- 174
- 175
- …
- следующая ›
- последняя »
