ВУЗ:
Составители:
Рубрика:
ϕ
Z
Γ
ϕ(y)E(x, y)dσ
y
= g(x), x ∈ Γ.
V ϕ
V ϕ
A
∂
∂n
x
Z
Ω
ψ(y)
∂E(x, y)
∂n
y
dσ
y
= g(x), x ∈ Γ.
ψ
y → x |x − y|
−3
Ω ⊂ R
3
u
∆u = −f Ω,
Γ = ∂Ω
[Bu](x) ≡ α(x)u(x) + β(x)
∂u(x)
∂n
= g(x), x ∈ Γ.
äëÿ íàõîæäåíèÿ íåèçâåñòíîé óíêöèè ϕ:
Z
ϕ(y)E(x, y)dσy = g(x), x ∈ Γ. (3.23)
Γ
åøèâ åãî, ïîëó÷èì ðåøåíèå çàäà÷è Äèðèõëå (3.1), (3.2) â âèäå ïîòåíöèàëà
ïðîñòîãî ñëîÿ V ϕ.
Îòìåòèì, ÷òî ê íàñòîÿùåìó âðåìåíè ïîñòðîåíà äîñòàòî÷íî ïîëíàÿ òåî-
ðèÿ èññëåäîâàíèÿ èíòåãðàëüíûõ óðàâíåíèé 1-ãî ðîäà âèäà (3.23). Ýòî äå-
ëàåò èçëîæåííóþ ñõåìó îòûñêàíèÿ ðåøåíèÿ çàäà÷è Äèðèõëå â âèäå V ϕ
âïîëíå êîíêóðåíòíîñïîñîáíîé êàê â òåîðåòè÷åñêîì, òàê è â âû÷èñëèòåëü-
íîì ïëàíå, ïî îòíîøåíèþ ê èçëîæåííîé âûøå ñõåìå îòûñêàíèÿ åå ðåøåíèÿ
â âèäå (3.5).
Óêàçàííàÿ ñõåìà ïðèìåíèìà è äëÿ âíåøíåé çàäà÷è Äèðèõëå (3.1)(3.3),
à òàêæå äëÿ âíóòðåííåé è âíåøíåé çàäà÷ Íåéìàíà.  ÷àñòíîñòè, ðåøåíèå
âíóòðåííåé çàäà÷è Íåéìàíà (3.1), (3.4) ìîæíî èñêàòü íå â âèäå (3.13), à â
âèäå ñóììû ïîòåíöèàëà äâîéíîãî ñëîÿ (3.5) è ïðîèçâîëüíîé êîíñòàíòû A.
Ïîäñòàâëÿÿ ýòî ïðåäñòàâëåíèå â (3.4), ïðèõîäèì ê óðàâíåíèþ
∂ ∂E(x, y)
Z
ψ(y) dσy = g(x), x ∈ Γ. (3.24)
∂nx ∂ny
Ω
Îïÿòü ïîëó÷èëè óðàâíåíèå 1-ãî ðîäà îòíîñèòåëüíî íåèçâåñòíîé óíêöèè
ψ . Îäíàêî, â îòëè÷èå îò ïðîñòîãî èíòåãðàëüíîãî óðàâíåíèÿ (3.23) ñ íåñîá-
ñòâåííûì ïîâåðõíîñòíûì èíòåãðàëîì â ëåâîé ÷àñòè, ëåâàÿ ÷àñòü (3.24)
îïðåäåëÿåò òàê íàçûâàåìûé ãèïåðñèíãóëÿðíûé èíòåãðàëüíûé îïåðàòîð. Ýòî
ñâÿçàíî ñ òåì, ÷òî ÿäðî èíòåãðàëüíîãî îïåðàòîðà â (3.24) âåäåò ñåáÿ ïðè
y → x êàê |x − y|−3 (â ñëó÷àå òðåõ èçìåðåíèé). Íåñìîòðÿ íà ýòî, òåîðèÿ
èññëåäîâàíèÿ èíòåãðàëüíûõ óðàâíåíèé âèäà (3.24) äîñòàòî÷íî õîðîøî ðàç-
ðàáîòàíà â îïðåäåëåííûõ óíêöèîíàëüíûõ ïðîñòðàíñòâàõ. Ýòî äåëàåò èç-
ëîæåííóþ ñõåìó íàõîæäåíèÿ ðåøåíèÿ çàäà÷è Íåéìàíà â âèäå ïîòåíöèàëà
äâîéíîãî ñëîÿ âïîëíå ðàáîòîñïîñîáíîé.
4. Ìåòîä óíêöèé ðèíà ðåøåíèÿ ñìåøàííîé
êðàåâîé çàäà÷è äëÿ óðàâíåíèÿ Ïóàññîíà
àññìîòðèì îáùóþ êðàåâóþ çàäà÷ó äëÿ óðàâíåíèÿ Ïóàññîíà â îãðàíè-
÷åííîé îáëàñòè Ω ⊂ R3 . Îíà çàêëþ÷àåòñÿ â íàõîæäåíèè ðåøåíèÿ u óðàâ-
íåíèÿ Ïóàññîíà
∆u = −f â Ω, (4.1)
óäîâëåòâîðÿþùåãî íà ãðàíèöå Γ = ∂Ω îáùåìó êðàåâîìó óñëîâèþ
∂u(x)
[Bu](x) ≡ α(x)u(x) + β(x) = g(x), x ∈ Γ. (4.2)
∂n
182
Страницы
- « первая
- ‹ предыдущая
- …
- 180
- 181
- 182
- 183
- 184
- …
- следующая ›
- последняя »
