Классические методы математической физики. Алексеев Г.В. - 47 стр.

UptoLike

Составители: 

r, θ, ϕ
r
r
2
u
r
+
θ,ϕ
u + k
2
r
2
u = 0,
θ,ϕ
u =
1
sinθ
θ
sinθ
u
θ
+
1
sin
2
θ
2
u
ϕ
2
.
u(r, θ, ϕ) = R(r)v(θ, ϕ).
(r
2
R
)
+ k
2
r
2
R
R
=
θ,ϕ
v
v
= λ,
λ
(r
2
R
)
+ (k
2
r
2
λ)R = 0
R
θ,ϕ
v + λv
1
sinθ
θ
sinθ
v
θ
+
1
sin
2
θ
2
v
ϕ
2
+ λv = 0
v
C
(S
1
)
S
1
= {(r, θ, ϕ), r = 1, 0 θ π, 0 ϕ < 2π}
v(θ, ϕ + 2π) = v(θ, ϕ),
ϕ
1
sinθ
d
sinθ
dv
+ λv = 0, θ (0, π).
   Ïðåæäå âñåãî, ââåäåì ñåðè÷åñêèå êîîðäèíàòû r, θ, ϕ, ñ èñïîëüçîâàíèåì
êîòîðûõ çàïèøåì óðàâíåíèå (4.1) â âèäå
                              
                     ∂      ∂u
                         r2      + ∆θ,ϕ u + k 2 r2u = 0,            (4.4)
                    ∂r      ∂r
ãäå
                                                 1 ∂ 2u
                                                  
                             1 ∂              ∂u
                  ∆θ,ϕ u =               sinθ
                                            +            .        (4.5)
                           sinθ ∂θ             sin2θ ∂ϕ2
                                              ∂θ
Ñëåäóÿ ñõåìå ìåòîäà Ôóðüå, áóäåì èñêàòü ÷àñòíûå ðåøåíèÿ óðàâíåíèÿ (4.4)
â âèäå ïðîèçâåäåíèÿ
                        u(r, θ, ϕ) = R(r)v(θ, ϕ).                 (4.6)
Ïîäñòàâëÿÿ (4.6) â (4.4) è ðàçäåëÿÿ ïåðåìåííûå, ïîëó÷àåì

                      (r2R′ )′ + k 2 r2R    ∆θ,ϕ v
                                         =−        = λ,
                              R              v
ãäå λ  êîíñòàíòà ðàçäåëåíèÿ. Îòñþäà ïðèõîäèì ê îáûêíîâåííîìó äèå-
ðåíöèàëüíîìó óðàâíåíèþ

                         (r2 R′ )′ + (k 2r2 − λ)R = 0                  (4.7)

äëÿ óíêöèè R è óðàâíåíèþ â ÷àñòíûõ ïðîèçâîäíûõ

                                               1 ∂ 2v
                                        
                         1 ∂          ∂v
         ∆θ,ϕ v + λv ≡           sinθ      +            + λv = 0       (4.8)
                       sinθ ∂θ        ∂θ     sin2 θ ∂ϕ2
äëÿ óíêöèè v .
  Îïðåäåëåíèå 4.1.       ëàäêèå (êëàññà C ∞(S1 )) íà åäèíè÷íîé ñåðå

             S1 = {(r, θ, ϕ), r = 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π}
ðåøåíèÿ óðàâíåíèÿ (4.8), óäîâëåòâîðÿþùèå óñëîâèþ ïåðèîäè÷íîñòè

                          v(θ, ϕ + 2π) = v(θ, ϕ),                      (4.9)

íàçûâàþòñÿ ñåðè÷åñêèìè óíêöèÿìè.
  4.2. Ïðîñòåéøèå ñåðè÷åñêèå óíêöèè. Ïîëèíîìû Ëåæàíä-
ðà. Áóäåì îòûñêèâàòü ñíà÷àëà òàêèå ñåðè÷åñêèå óíêöèè (ò. å. ãëàäêèå
ðåøåíèÿ óðàâíåíèÿ (4.8)), êîòîðûå íå çàâèñÿò îò óãëà ϕ. Ñ ýòîé öåëüþ
ðàññìîòðèì âìåñòî óðàâíåíèÿ (4.8) óðàâíåíèå
                                 
                  1 d          dv
                          sinθ      + λv = 0, θ ∈ (0, π).       (4.10)
                sinθ dθ        dθ


                                         47