Классические методы математической физики. Алексеев Г.В. - 49 стр.

UptoLike

Составители: 

P
4
(x) =
1
8
(35x
4
30x
2
+ 3), P
5
(x) =
1
8
(63x
5
70x
3
+ 15x).
P
n
n (1, 1)
k k n nk
(1, 1)
{P
n
(x)}
n=0
[(1 x
2
)P
]
+ λP = 0, P C
2
(1, 1) C[1, 1],
λ
n
= n(n+1), n = 0, 1, 2, ...
{P
n
(x)}
n=0
C[1, 1] [1, 1]
L
2
(1, 1)
x
P
x
P
0.1
0.2 0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-1.0
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.0
0.5
-0.5
0
0.5
1.0
f L
2
(1, 1)
f(x) =
X
n=0
a
n
P
n
(x), a
n
=
(f, P
n
)
kP
n
k
2
, (f, P
n
) =
1
Z
1
f(x)P
n
(x)dx, kP
n
k
2
=
1
Z
1
P
2
n
dx,
f
kf(x)
N
X
n=0
a
n
P
n
(x)k
L
2
(1,1)
0
N .
f
f
                1                             1
        P4 (x) = (35x4 − 30x2 + 3), P5 (x) = (63x5 − 70x3 + 15x).
                8                             8
   4. Ïîëèíîì Ëåæàíäðà Pn èìååò ðîâíî n íóëåé âíóòðè èíòåðâàëà (−1, 1),
à åãî ïðîèçâîäíàÿ k -ãî ïîðÿäêà (k ≤ n) èìååò n−k íóëåé âíóòðè èíòåðâàëà
(−1, 1) è íå îáðàùàåòñÿ â íóëü íà åãî êîíöàõ.
   5. Ïîëèíîìû Ëåæàíäðà {Pn (x)}∞  n=0 è òîëüêî îíè îáðàçóþò ñîâîêóïíîñòü
âñåõ ñîáñòâåííûõ óíêöèé ñïåêòðàëüíîé çàäà÷è
                    [(1 − x2)P ′ ]′ + λP = 0, P ∈ C 2(−1, 1) ∩ C[−1, 1],                                                                  (4.16)
îòâå÷àþùèõ (ïðîñòûì) ñîáñòâåííûì çíà÷åíèÿì λn = n(n+1), n = 0, 1, 2, ...
.
   6. Ñèñòåìà ïîëèíîìîâ Ëåæàíäðà {Pn (x)}∞ n=0 ÿâëÿåòñÿ ïîëíîé â ïðî-
ñòðàíñòâå C[−1, 1] íåïðåðûâíûõ óíêöèé íà èíòåðâàëå [−1, 1] è, áîëåå
òîãî, îíà ïîëíà â ïðîñòðàíñòâå L2 (−1, 1).
                P                                           1.6
                                                                   P
          1.0                                               1.4
                                                            1.2

                                                            1.0
                                                             0.8
          0.5                                               0.6

                                                             0.4
                                                            0.2

                                                              0
           0                                                -0.2
                                                            -0.4

                                                            -0.6
                                                            -0.8
         -0.5                                      x        -1.0
                                                                       0.1    0.2    0.3   0.4         0.6   0.7   0.8   0.9   1.0
                                               1.0                                               0.5                                 x
                                0.5




                            à)                                                                   á)
                                                èñ. 4.1

  Òàêèì îáðàçîì, ëþáóþ óíêöèþ f ∈ L2 (−1, 1) ìîæíî ðàçëîæèòü â ðÿä
Ôóðüå:
        ∞                                                                    Z1                                                          Z1
        X                   (f, Pn)
f (x) =     an Pn (x), an =         2
                                      , (f, Pn ) =                                  f (x)Pn(x)dx, kPnk2 =                                     Pn2 dx,
        n=0
                            kP  n k
                                                                        −1                                                               −1
                                                                                                                                          (4.17)
ñõîäÿùèéñÿ ê f â ñðåäíåì êâàäðàòè÷íîì. Ïîñëåäíåå îçíà÷àåò, ÷òî
                                N
                                X
                     kf (x) −          an Pn (x)kL2(−1,1) → 0                              ïðè N → ∞.
                                 n=0

Âàæíî îòìåòèòü, ÷òî ñ ðîñòîì ãëàäêîñòè óíêöèè f ðàñòåò è ïîðÿäîê ñêî-
ðîñòè ñõîäèìîñòè åå ðÿäà Ôóðüå (4.17) ê f (ñì. [6, 7, 11℄).

                                                       49