Классические методы математической физики. Алексеев Г.В. - 48 стр.

UptoLike

Составители: 

x = cosθ : [0, π] [1, 1], v(θ) = P (x),
d
=
dx
d
dx
= sinθ
d
dx
, (4.11a)
d
dx
1 x
2
dP
dx
+ λP = 0, x (1, 1).
C
[1, 1]
λ = λ
n
n(n + 1), n = 0, 1, 2, ... .
d
dx
1 x
2
dP
dx
+ n(n + 1)P = 0, x (1, 1)
P
n
(x)
P
n
(x)
P
n
(x) =
1
2
n
n!
d
n
dx
n
(x
2
1)
n
, n = 0, 1, ... .
P
n
(x) = (1)
n
P
n
(x)
{P
n
(x)}
n=0
L
2
(1, 1)
(P
n
, P
m
) =
1
Z
1
P
n
(x)P
m
(x)dx =
2
2n+1
, n = m,
0, n 6= m.
P
0
(x) = 1, P
1
(x) = x, P
2
(x) =
1
2
(3x
2
1), P
3
(x) =
1
2
(5x
3
3x),
Äåëàÿ â íåì çàìåíó

                 x = cosθ : [0, π] → [−1, 1], v(θ) = P (x),                (4.11)

òàê ÷òî
                             d    dx d          d
                                =       = −sinθ ,                         (4.11a)
                             dθ   dθ dx        dx
ïåðåïèøåì (4.10) â âèäå
                              
                d        2 dP
                                                                           (4.12)
                          
                     1−x         + λP = 0,             x ∈ (−1, 1).
               dx           dx
Ýòî  óðàâíåíèå Ëåæàíäðà [11, ñ.377℄. Õîðîøî èçâåñòíî, ÷òî åãî ãëàäêèå
íà [-1,1℄ ðåøåíèÿ (êëàññà C ∞ [−1, 1]) ñóùåñòâóþò òîëüêî ïðè çíà÷åíèÿõ

                     λ = λn ≡ n(n + 1), n = 0, 1, 2, ... .                 (4.13)

Ñîîòâåòñòâóþùåå óðàâíåíèå
                            
             d            dP
                 1 − x2                                                    (4.14)
                        
                               + n(n + 1)P = 0,             x ∈ (−1, 1)
            dx            dx
èìååò åäèíñòâåííîå (ëèíåéíî íåçàâèñèìîå) îãðàíè÷åííîå íà [-1,1℄ ðåøåíèå
Pn (x), íàçûâàåìîå ïîëèíîìîì Ëåæàíäðà. Äåòàëüíîå îïèñàíèå ñâîéñòâ ïî-
ëèíîìîâ Ëåæàíäðà ìîæíî íàéòè, íàïðèìåð, â [6, . 335344℄, [7, ñ. 75
81℄, [11, Ÿ 25℄. Ïðèâåäåì çäåñü òå èç íèõ, êîòîðûå íèæå áóäóò èñïîëüçîâàòü-
ñÿ ïðè ïîñòðîåíèè ñåðè÷åñêèõ óíêöèé.
   1. Ïîëèíîì Ëåæàíäðà Pn (x) îïðåäåëÿåòñÿ ïî îðìóëå îäðèãà:
                          1 dn 2
                 Pn (x) = n      n
                                   (x − 1)n, n = 0, 1, ... .
                         2 n! dx
  2. Pn (−x) = (−1)nPn (x).
  3. Ïîëèíîìû Ëåæàíäðà {Pn (x)}∞  n=0 è òîëüêî îíè ïðåäñòàâëÿþò ñîáîé
îðòîãîíàëüíóþ â ïðîñòðàíñòâå L (−1, 1) ñèñòåìó (àëãåáðàè÷åñêèõ) ïîëè-
                                2

íîìîâ. Áîëåå òîãî, ñïðàâåäëèâà îðìóëà
                            Z1                          2
             (Pn , Pm ) =        Pn (x)Pm(x)dx =       2n+1 ,   n = m,
                                                                           (4.15)
                                                       0,       n 6= m.
                            −1

  Ïåðâûå øåñòü ïîëèíîìîâ Ëåæàíäðà èìåþò âèä (ñì. ðèñ. 4.1à)
                                    1                   1
    P0 (x) = 1, P1 (x) = x, P2 (x) = (3x2 − 1), P3 (x) = (5x3 − 3x),
                                    2                   2

                                         48