ВУЗ:
Составители:
Рубрика:
[−1, 1] λ = λ
n
d
m
P
n
/dx
m
P
n
P (x) ≡ P
m
n
(x)
λ = λ
n
= n(n + 1)
P
m
n
(x) = (1 − x
2
)
m/2
d
m
P
n
(x)
dx
m
.
L
2
(−1, 1)
m m − 1
d
dx
(1 − x
2
)
m
d
m
P
n
(x)
dx
m
+[λ − m(m − 1)] (1−x
2
)
m−1
d
m−1
P
n
(x)
dx
m−1
= 0.
L
m
n,k
=
1
Z
−1
P
m
n
(x)P
m
k
(x)dx =
1
Z
−1
(1 − x
2
)
m
d
m
P
n
dx
m
d
m
P
k
dx
m
dx.
L
m
n,k
=
(1 − x
2
)
m
d
m
P
n
dx
m
d
m−1
P
k
dx
m−1
1
−1
−
1
Z
−1
d
m−1
P
k
dx
m−1
d
dx
(1 − x
2
)
m
d
m
P
n
dx
m
dx =
= [n(n + 1) − m(m − 1)]
1
Z
−1
(1 − x
2
)
m−1
d
m−1
P
k
dx
m−1
d
m−1
P
n
dx
m−1
dx =
= [n(n + 1) − m(m − 1)]L
m−1
n,k
= (n + m)(n − m + 1)L
m−1
n,k
.
L
m
n,k
= (n + m)(n − m + 1)(n + m − 1)(n −m + 2)L
m−2
n,k
= ... =
= (n + m)(n + m − 1)...(n + 1)n(n − 1)...(n − m + 1)L
0
n,k
=
=
(n + m)!(n − m)!
n!(n − m + 1)!
L
0
n,k
=
(n + m)!
(n − m)!
L
0
n,k
.
L
0
n,k
≡
1
Z
−1
P
n
(x)P
k
(x)dx =
0, k 6= n,
2
2n+1
, k = n.
(4.29), èìååò íåòðèâèàëüíûå ãëàäêèå íà [−1, 1] ðåøåíèÿ òîëüêî ïðè λ = λn ,
ïðè÷åì ýòèìè ðåøåíèÿìè ÿâëÿþòñÿ ïðîèçâîäíûå dm Pn /dxm îò ïîëèíîìîâ
Ëåæàíäðà Pn . Âåðíóâøèñü ê èñõîäíîìó óðàâíåíèþ (4.23), ïðèõîäèì ê âû-
âîäó î òîì, ÷òî ïðèñîåäèíåííûå óíêöèè Ëåæàíäðà P (x) ≡ Pnm (x) ñóùå-
ñòâóþò òîëüêî ïðè λ = λn = n(n + 1) è îïðåäåëÿþòñÿ îðìóëàìè
m
2 m/2 d Pn (x)
Pnm (x) = (1 − x ) . (4.31)
dxm
Âû÷èñëèì íîðìû â L2 (−1, 1) ïðèñîåäèíåííûõ óíêöèé Ëåæàíäðà è îä-
íîâðåìåííî äîêàæåì èõ îðòîãîíàëüíîñòü. Ñ ýòîé öåëüþ çàìåíèì â óðàâíå-
íèè (4.30) m íà m − 1. Ïîëó÷èì óðàâíåíèå
m m−1
d 2 m d Pn (x) 2 m−1 d Pn (x)
(1 − x ) +[λ − m(m − 1)] (1−x ) = 0. (4.32)
dx dxm dxm−1
Ïîëîæèì
Z1 Z1 m
Pn dmPk
2 md
Lm
n,k = Pnm (x)Pkm(x)dx = (1 − x ) dx.
dxm dxm
−1 −1
Èíòåãðèðóÿ îäèí ðàç ïî ÷àñòÿì, èìååì ñ ó÷åòîì (4.32), ÷òî
m m−1 1 Z1
dm−1Pk d m
2 m d Pn d Pk 2 m d Pn
Lm
n,k = (1 − x ) − (1 − x ) dx =
dxm dxm−1 −1 dxm−1 dx dxm
−1
Z1 m−1
2 m−1 d Pk dm−1Pn
= [n(n + 1) − m(m − 1)] (1 − x ) dx =
dxm−1 dxm−1
−1
m−1 m−1
= [n(n + 1) − m(m − 1)]Ln,k = (n + m)(n − m + 1)Ln,k .
Ïîñëåäîâàòåëüíî ïðèìåíÿÿ ïîñëåäíþþ ðåêóððåíòíóþ îðìóëó, èìååì
Lm m−2
n,k = (n + m)(n − m + 1)(n + m − 1)(n − m + 2)Ln,k = ... =
= (n + m)(n + m − 1)...(n + 1)n(n − 1)...(n − m + 1)L0n,k =
(n + m)!(n − m)! 0 (n + m)! 0
= Ln,k = L .
n!(n − m + 1)! (n − m)! n,k
Íî â ñèëó ñâîéñòâ ïîëèíîìîâ Ëåæàíäðà
Z1
0, k 6= n,
L0n,k ≡ Pn (x)Pk (x)dx = 2
2n+1
, k = n.
−1
52
Страницы
- « первая
- ‹ предыдущая
- …
- 50
- 51
- 52
- 53
- 54
- …
- следующая ›
- последняя »
