Классические методы математической физики. Алексеев Г.В. - 53 стр.

UptoLike

Составители: 

1
Z
1
P
m
n
(x)P
m
k
(x)dx =
0, k 6= n,
2
(2n+1)
(n+m)!
(nm)!
, k = n.
kP
m
n
k
P
m
n
kP
m
n
k
2
1
Z
1
[P
m
n
(x)]
2
dx =
2
(2n + 1)
(n + m)!
(n m)!
.
P
m
n
kP
m
n
k = 1
m n
m 0
{P
m
n
(x)}
n=m
L
2
(1, 1)
S
1
λ = λ
n
, n = 0, 1, ...
P
m
n
(cosθ), P
m
n
(cosθ)sin P
m
n
(cosθ)cosmϕ,
m = 0, 1, 2, ..., n, n = 0, 1, 2, ... .
Y
m
n
cos
sin
m = 0 Y
0
n
(θ, ϕ) = P
n
(cosθ),
m = 1 Y
1
n
(θ, ϕ) = P
1
n
(cosθ)cosϕ, Y
1
n
(θ, ϕ) = P
1
n
(cosθ)sinϕ,
...
m = n Y
n
n
(θ, ϕ) = P
n
n
(cosθ)cosnϕ, Y
n
n
(θ, ϕ) = P
n
n
(cosθ)sinnϕ.
Y
m
n
n
n 2n + 1
λ
n
 ðåçóëüòàòå ïðèõîäèì ê ðàâåíñòâó
               Z1
                                               0,                k 6= n,
                                          
                    Pnm (x)Pkm(x)dx   =           2   (n+m)!                   (4.33)
                                               (2n+1) (n−m)!
                                                             ,   k = n.
               −1

Èç (4.33), â ÷àñòíîñòè, ñëåäóåò, ÷òî íîðìà kPnm k ïðèñîåäèíåííîé óíêöèè
Ëåæàíäðà Pnm îïðåäåëÿåòñÿ îðìóëîé
                           Z1
                                                       2     (n + m)!
               kPnm k2 ≡        [Pnm (x)]2dx =                        .
                                                    (2n + 1) (n − m)!
                           −1
                                                                           m
    ðàèêè íîðìèðîâàííûõ ïðèñîåäèíåííûõ óíêöèé Ëåæàíäðà P n ñ íîð-
        m
ìîé kP n k = 1 ïðèâåäåíû äëÿ íåêîòîðûõ êîíêðåòíûõ çíà÷åíèé m è n íà
ðèñ.4.1á.
  Ìîæíî òàêæå ïîêàçàòü (ñì., íàïðèìåð, [11, . 383℄, [56, . 719℄), ÷òî ïðè
êàæäîì öåëîì m ≥ 0 ñèñòåìà ïðèñîåäèíåííûõ óíêöèé Ëåæàíäðà

                                    {Pnm (x)}∞
                                             n=m                               (4.34)

ÿâëÿåòñÿ ïîëíîé â ïðîñòðàíñòâå L2 (−1, 1).
  4.4. Ôóíäàìåíòàëüíûå ñåðè÷åñêèå óíêöèè.             Âåðíóâøèñü ê èñ-
õîäíîìó óðàâíåíèþ (4.8) äëÿ ñåðè÷åñêèõ óíêöèé, ïðèõîäèì ê âûâîäó,
÷òî åãî ãëàäêèå íà S1 ðåøåíèÿ ñóùåñòâóþò òîëüêî ïðè λ = λn , n = 0, 1, ...,
ïðè÷åì óêàçàííûå ðåøåíèÿ, ò. å. ñåðè÷åñêèå óíêöèè, îïðåäåëÿþòñÿ îð-
ìóëàìè:
             Pnm (cosθ), Pnm (cosθ)sinmϕ è Pnm (cosθ)cosmϕ,
                       m = 0, 1, 2, ..., n, n = 0, 1, 2, ... .
Îáîçíà÷èì ââåäåííûå óíêöèè ÷åðåç Ynm, ïðè÷åì óñëîâèìñÿ â ñîîòâåò-
ñòâèè ñ [56, ñ. 723℄ ïðèïèñûâàòü îòðèöàòåëüíûé âåðõíèé èíäåêñ òåì óíê-
öèÿì, êîòîðûå ñîäåðæàò cosmϕ, à ïîëîæèòåëüíûé  òåì óíêöèÿì, êîòî-
ðûå ñîäåðæàò sinmϕ. Ñîãëàñíî îïðåäåëåíèþ èìååì

     m=0       Yn0(θ, ϕ) = Pn (cosθ),
     m=1       Yn−1(θ, ϕ) = Pn1 (cosθ)cosϕ, Yn1(θ, ϕ) = Pn1 (cosθ)sinϕ,
       ...
     m=n       Yn−n(θ, ϕ) = Pnn (cosθ)cosnϕ, Ynn(θ, ϕ) = Pnn (cosθ)sinnϕ. (4.35)
  Ôóíêöèè Ynm ïðè êàæäîì èêñèðîâàííîì n íàçûâàþòñÿ óíäàìåíòàëü-
íûìè ñåðè÷åñêèìè óíêöèÿìè ïîðÿäêà n. ×èñëî èõ ðàâíî 2n + 1, ò. å.
êðàòíîñòè ñîáñòâåííîãî çíà÷åíèÿ λn . Îíè, î÷åâèäíî, ëèíåéíî íåçàâèñèìû,

                                          53