Классические методы математической физики. Алексеев Г.В. - 64 стр.

UptoLike

Составители: 

ε = u(x
0
, t
0
) M > 0,
v u
v(x, t) = u(x, t) +
ε
2
(2T t)
T
, (x, t)
Q
T
.
v(x, t) u(x, t)+ε (x, t) Q
T
(x, t) Σ
T
t = 0
v(x
0
, t
0
) u(x
0
, t
0
) = ε + M ε + u(x, t) ε + v(x, t) ε = v(x, t).
v
Q
T
(x
1
, t
1
) × (0, T ]
v(x
1
, t
1
) v(x
0
, t
0
) ε + M > ε.
v (x
1
, t
1
)
gradv = 0, v 0,
v
t
0.
f 0 Q
T
(x
1
, t
1
)
ρ
u
t
div(pgra du) + qu f (x, t) = ρ
v
t
pv (gradp, gradv) + qv f+
+
ε
2
(
ρ
T
q
2T t
1
T
) qv +
ε
2
(
ρ
T
q
2T t
1
T
) qε
1
2T t
1
2T
+
ερ
2T
> 0.
u Q
T > 0
M
0
= kϕk
C(
Ω)
, M
1
= kgk
C×[0,T ])
, M = kfk
C(Q
T
)
.
Ïîëîæèâ
                            ε = u(x0, t0 ) − M > 0,                        (1.12)
ââåäåì óíêöèþ v (áàðüåð äëÿ ðåøåíèÿ u) ïî îðìóëå
                                        ε (2T − t)
                  v(x, t) = u(x, t) +              , (x, t) ∈ QT .
                                        2    T
ßñíî, ÷òî v(x, t) ≤ u(x, t) + ε ∀(x, t) ∈ QT . Ñ ó÷åòîì ýòîãî è (1.12) ïðè âñåõ
(x, t) ∈ ΣT ëèáî ïðè t = 0 èìååì
    v(x0, t0 ) ≥ u(x0, t0 ) = ε + M ≥ ε + u(x, t) ≥ ε + v(x, t) − ε = v(x, t).
Îòñþäà ñëåäóåò, ÷òî óíêöèÿ v òàêæå ïðèíèìàåò ñâîé ïîëîæèòåëüíûé â
QT ìàêñèìóì â íåêîòîðîé âíóòðåííåé òî÷êå (x1 , t1) ∈ Ω × (0, T ], ïðè÷¼ì
                       v(x1, t1) ≥ v(x0, t0 ) ≥ ε + M > ε.                 (1.13)

    ñèëó íåîáõîäèìûõ óñëîâèé ìàêñèìóìà óíêöèè v â òî÷êå (x1 , t1 ) èìå-
åì:
                                           ∂v
                      gradv = 0, ∆v ≤ 0,       ≥ 0.                (1.14)
                                           ∂t
Èç (1.14), íåðàâåíñòâà (1.13) è óñëîâèÿ f ≤ 0 â QT âûòåêàåò, ÷òî â òî÷êå
(x1, t1 )
 ∂u                                  ∂v
ρ   − div(pgradu) + qu − f (x, t) = ρ − p∆v − (gradp, gradv) + qv − f +
 ∂t                                  ∂t
                                                             
 ε ρ     2T − t1         ε ρ       2T − t1            2T − t1     ερ
+ ( −q           ) ≥ qv + ( − q            ) ≥ qε 1 −           +    > 0.
 2 T        T            2 T         T                  2T        2T
Ïîñëåäíåå ïðîòèâîðå÷èò óðàâíåíèþ (1.8). Òàêèì îáðàçîì, íåðàâåíñòâî (1.11)
íåâåðíî, à ñëåäîâàòåëüíî, ñïðàâåäëèâî ïðîòèâîïîëîæíîå íåðàâåíñòâî (1.9).
Ïî àíàëîãè÷íîé ñõåìå äîêàçûâàåòñÿ ñïðàâåäëèâîñòü ïðèíöèïà ìèíèìóìà
(1.10).
   Îñíîâûâàÿñü íà ïðèíöèïå ìàêñèìóìà, äîêàæåì òåïåðü åäèíñòâåííîñòü
è íåïðåðûâíóþ çàâèñèìîñòü îò èñõîäíûõ äàííûõ ðåøåíèÿ ïåðâîé íà÷àëü-
íî-êðàåâîé çàäà÷è äëÿ (1.8). Îíà çàêëþ÷àåòñÿ â íàõîæäåíèè êëàññè÷åñêî-
ãî ðåøåíèÿ u óðàâíåíèÿ (1.8) â îáëàñòè Q∞ , óäîâëåòâîðÿþùåãî óñëîâèþ
Äèðèõëå (1.2) è íà÷àëüíîìó óñëîâèþ (1.3). Äëÿ êðàòêîñòè íà óêàçàííóþ
çàäà÷ó áóäåì ññûëàòüñÿ êàê íà çàäà÷ó 1. Ïðåäïîëàãàÿ, ÷òî âûïîëíÿþòñÿ
óñëîâèÿ (i) è (ii) ãëàäêîñòè è ñîãëàñîâàíèÿ èñõîäíûõ äàííûõ, ïîëîæèì äëÿ
èêñèðîâàííîãî T > 0

             M0 = kϕkC(Ω) , M1 = kgkC(Γ×[0,T ]), M = kf kC(QT ) .          (1.15)


                                         64