Классические методы математической физики. Алексеев Г.В. - 86 стр.

UptoLike

Составители: 

u = 0
§ 3
u = f,
f
f
u = 0,
R
n
n 2
n = 3 n = 2
e
= R
n
\
u : R
x
u :
e
R
e
e
e
    ËÀÂÀ 6. Ýëåìåíòû òåîðèè ýëëèïòè÷åñêèõ
     óðàâíåíèé è ãàðìîíè÷åñêèõ óíêöèé
   Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå ñòàöèîíàðíûõ ïðîöåññîâ ðàçëè÷íîé è-
çè÷åñêîé ïðèðîäû ïðèâîäèò ê íåîáõîäèìîñòè ðåøåíèÿ óðàâíåíèé ýëëèïòè-
÷åñêîãî òèïà. Íàèáîëåå ïðîñòåéøèì è â òî æå âðåìÿ âàæíåéøèì ïðåäñòà-
âèòåëåì óðàâíåíèé ýòîãî òèïà ÿâëÿåòñÿ óðàâíåíèå Ëàïëàñà ∆u = 0. Çäåñü
∆  îïåðàòîð Ëàïëàñà (åãî îïðåäåëåíèå ñì. â § 3 ãë. 1). Â ýòîé ãëàâå áó-
äóò èçó÷åíû îñíîâíûå ñâîéñòâà åãî ðåøåíèé, íàçûâàåìûõ ãàðìîíè÷åñêèìè
óíêöèÿìè.

   Ÿ1. Óðàâíåíèå Ëàïëàñà. Ñèíãóëÿðíûå ðåøåíèÿ è
                  ãàðìîíè÷åñêèå ïîòåíöèàëû

  1.1. Îïðåäåëåíèå ãàðìîíè÷åñêîé óíêöèè.         ýòîì è ñëåäóþùèõ
ïàðàãðààõ áóäåì ðàññìàòðèâàòü (íåîäíîðîäíîå) óðàâíåíèå Ëàïëàñà

                                ∆u = −f,                             (1.1)

ãäå ∆  îïåðàòîð Ëàïëàñà. Õîðîøî èçâåñòíî (ñì. ãë. 1), ÷òî óðàâíåíèå (1.1)
ìîäåëèðóåò ñòàöèîíàðíîå ðàñïðåäåëåíèå òåìïåðàòóðû â îáëàñòè Ω, çàïîë-
íåííîé îäíîðîäíîé ñðåäîé, ïðè óñëîâèè, ÷òî f îïèñûâàåò îáúåìíóþ ïëîò-
íîñòü âíåøíèõ èñòî÷íèêîâ òåïëà. Ïîòåíöèàë ãðàâèòàöèîííîãî ïîëÿ (ëèáî
êóëîíîâ ïîòåíöèàë) òàêæå óäîâëåòâîðÿåò óðàâíåíèþ (1.1), ãäå f îïèñûâàåò
îáúåìíóþ ïëîòíîñòü ìàññ (ëèáî ýëåêòðè÷åñêèõ çàðÿäîâ). Îñîáåííî âàæíóþ
ðîëü èãðàåò îäíîðîäíîå óðàâíåíèå Ëàïëàñà

                                 ∆u = 0,                             (1.2)

îïèñûâàþùåå ñîîòâåòñòâóþùèå ñòàöèîíàðíûå èçè÷åñêèå ïðîöåññû â îò-
ñóòñòâèå âíåøíèõ èñòî÷íèêîâ.  äàëüíåéøåì, ñëåäóÿ óñòîÿâøåéñÿ òåðìè-
íîëîãèè, ïîä óðàâíåíèåì Ëàïëàñà áóäåì ïîíèìàòü èìåííî óðàâíåíèå (1.2),
òîãäà êàê íà (1.1) áóäåì ññûëàòüñÿ êàê íà óðàâíåíèå Ïóàññîíà.
   Ïóñòü Ω  ïðîèçâîëüíîå îãðàíè÷åííîå îòêðûòîå ìíîæåñòâî â ïðîñòðàí-
ñòâå Rn ïðîèçâîëüíîãî ÷èñëà n ≥ 2 èçìåðåíèé. Ôèçè÷åñêèé èíòåðåñ, êî-
íå÷íî, ïðåäñòàâëÿþò ñëó÷àè n = 3 (òðåõìåðíîå ïðîñòðàíñòâî) è n = 2
(ïëîñêîñòü). Ïîëîæèì Ωe = Rn \ Ω.
   Îïðåäåëåíèå 1.1. Ôóíêöèÿ u : Ω → R íàçûâàåòñÿ ãàðìîíè÷åñêîé â
Ω, åñëè îíà äâàæäû íåïðåðûâíî äèåðåíöèðóåìà â Ω è óäîâëåòâîðÿåò â
êàæäîé òî÷êå x ∈ Ω óðàâíåíèþ Ëàïëàñà (1.2).
   Îïðåäåëåíèå 1.2. Ôóíêöèÿ u : Ωe → R íàçûâàåòñÿ ãàðìîíè÷åñêîé âî
âíåøíîñòè Ωe îãðàíè÷åííîãî îòêðûòîãî ìíîæåñòâà Ω, åñëè îíà äâàæäû
íåïðåðûâíî äèåðåíöèðóåìà â Ωe , óäîâëåòâîðÿåò âñþäó â Ωe óðàâíåíèþ

                                    86