ВУЗ:
Составители:
Рубрика:
r ρ
r
u
θ ϕ
1
r
2
d
dr
r
2
du
dr
= 0, r = |x| > 0.
r
2
u(x) = U(r) ≡ C
1
/r +C
2
C
1
C
2
C
1
= 1/4π C
2
= 0
u(x) =
1
4π|x|
≡
1
4πr
.
R
3
x = 0
x 6= 0
|x|
−1
R
3
\{0}
R
3
1/|x| 1/4π
r
x = (x
1
, x
2
, x
3
)
y = (y
1
, y
2
, y
3
) ∈ R
3
E
3
(·, y) : R
3
→ R
E
3
(x, y) ≡
1
4π|x − y|
=
1
4π
p
(x
1
− y
1
)
2
+ (x
2
− y
2
)
2
+ (x
3
− y
3
)
2
, x 6= y,
Ω R
3
y
y = 0 y 6= 0
y
â öèëèíäðè÷åñêîé ñèñòåìå êîîðäèíàò.  ïðèëîæåíèÿõ âàæíóþ ðîëü èãðàþò ðåøåíèÿ óðàâíåíèÿ Ëàïëàñà, îá- ëàäàþùèå ñåðè÷åñêîé èëè öèëèíäðè÷åñêîé ñèììåòðèåé, ò. å. çàâèñÿùèå òîëüêî îò îäíîé ïåðåìåííîé: r èëè ρ. Íàéäåì ñíà÷àëà ðåøåíèÿ óðàâíåíèÿ Ëàïëàñà, çàâèñÿùèå òîëüêî îò r. Äëÿ ýòîãî çàïèøåì óðàâíåíèå Ëàïëàñà â ñåðè÷åñêèõ êîîðäèíàòàõ è âîñïîëüçóåìñÿ òåì àêòîì, ÷òî ðåøåíèå u íå çàâèñèò îò θ è ϕ. Ó÷èòûâàÿ (1.5), ïîëó÷èì óðàâíåíèå 1 d du 2 r2 = 0, r = |x| > 0. (1.7) r dr dr Óìíîæàÿ íà r2 è èíòåãðèðóÿ äâàæäû ïîëó÷åííîå óðàâíåíèå, âûâîäèì, ÷òî u(x) = U (r) ≡ C1/r + C2, ãäå C1 è C2 ïðîèçâîëüíûå ïîñòîÿííûå. Ïîëàãàÿ çäåñü C1 = 1/4π , C2 = 0, ïîëó÷èì óíêöèþ 1 1 u(x) = ≡ . (1.8) 4π|x| 4πr Ôóíêöèÿ (1.8) ÿâëÿåòñÿ áåñêîíå÷íî äèåðåíöèðóåìîé è, áîëåå òîãî, àíà- ëèòè÷åñêîé âñþäó â R3 , êðîìå òî÷êè x = 0, ãäå îíà èìååò îñîáåííîñòü 1-ãî ïîðÿäêà. Êðîìå òîãî, ïî ïîñòðîåíèþ îíà óäîâëåòâîðÿåò óðàâíåíèþ Ëàïëàñà (1.2) â êàæäîé òî÷êå x 6= 0 è óáûâàåò íà áåñêîíå÷íîñòè ñ ïåðâûì ïîðÿäêîì ïî |x|−1 . Ñëåäîâàòåëüíî, îíà ÿâëÿåòñÿ ãàðìîíè÷åñêîé â R3 \ {0}. Ôóíêöèþ (1.8) íàçûâàþò ñèíãóëÿðíûì ðåøåíèåì îïåðàòîðà Ëàïëàñà â ïðî- ñòðàíñòâå R3 .  ñâîþ î÷åðåäü, ñóììó ñèíãóëÿðíîãî ðåøåíèÿ è ëþáîé ãàð- ìîíè÷åñêîé óíêöèè íàçûâàþò óíäàìåíòàëüíûì ðåøåíèåì îïåðàòîðà Ëàïëàñà. Âìåñòî òåðìèíà ñèíãóëÿðíîå èñïîëüçóþò òàêæå òåðìèíû ýëå- ìåíòàðíîå, ëèáî ãëàâíîå óíäàìåíòàëüíîå ðåøåíèå. Ïîä÷åðêíåì, ÷òî íàçâàíèå ñèíãóëÿðíîå ðåøåíèå îòíîñèòñÿ èìåííî ê óíêöèè (1.8), îòëè- ÷àþùåéñÿ îò óíêöèè 1/|x| ìíîæèòåëåì 1/4π . Ïðè÷èíà ïîÿâëåíèÿ ýòîãî ìíîæèòåëÿ âûÿñíèòñÿ ïîçæå. Ïðèâåäåííûé çäåñü ðåçóëüòàò îñòàåòñÿ ñïðàâåäëèâûì, åñëè â êà÷åñòâå r â (1.8) âçÿòü ðàññòîÿíèå îò ïåðåìåííîé òî÷êè x = (x1, x2 , x3 ) äî ïðîèçâîëü- íîé òî÷êè y = (y1 , y2 , y3 ) ∈ R3 . Äðóãèìè ñëîâàìè, ñïðàâåäëèâà ñëåäóþùàÿ ëåììà Ëåììà 1.1. Ôóíêöèÿ E3 (·, y) : R3 → R, îïðåäåëÿåìàÿ îðìóëîé 1 1 E3 (x, y) ≡ = p , x 6= y, 4π|x − y| 4π (x1 − y1 )2 + (x2 − y2 )2 + (x3 − y3)2 (1.9) ÿâëÿåòñÿ ãàðìîíè÷åñêîé â ëþáîé îáëàñòè Ω ïðîñòðàíñòâà R , íå ñîäåð- 3 æàùåé òî÷êè y. Äîêàçàòåëüñòâî. Ïðè y = 0 ëåììà óæå äîêàçàíà. Ïðè y 6= 0 ñëåäóåò ââåñòè ñåðè÷åñêóþ ñèñòåìó êîîðäèíàò ñ öåíòðîì â òî÷êå y è ïîâòîðèòü ïðåäûäóùèå ðàññóæäåíèÿ. 88
Страницы
- « первая
- ‹ предыдущая
- …
- 86
- 87
- 88
- 89
- 90
- …
- следующая ›
- последняя »