ВУЗ:
Составители:
Рубрика:
41
( ) , 0, 1, 2, 3
r
у r r
h t k t b r= + =
и найдем элементы ЧХ путем интегрирова-
ния с помощью аппроксимирующих прямых. Используем формулу
0
( ) ( ) , 1,2... ,
t
i
t
t
i i
W h t e dt i
δ
δ δ η
−
= =
∫
(2.28)
в
которой
η
-
размерность
ЧХ
,
определяемая
числом
неизвестных
коэффициентов
передаточной
функции
.
Значения
узлов
, 1,2...
i
i
δ η
=
назначаются
по
рекомендациям
,
изложенным
в
п
. 2.24:
по
формуле
(2.19)
вычисляется
значение
1
δ
,
затем
находятся
остальные
узлы
, 2,3...
i i
i i
δ δ η
= =
.
Рис. 2.5. График желаемой переходной характеристики
(
)
h t
с характерными точками и ее аппроксимированное представление
(
)
пр
ж
h t
Принятая
форма
аппроксимации
исходной
характеристики
отрез
-
ками
прямых
позволяет
достаточно
просто
выполнить
численное
интег
-
рирование
.
В
результате
будет
получена
ЧХ
{
}
( )
i
W
η
δ
, которая совмест-
но с дробно-рациональной формой искомой передаточной функции по-
зволяет составить СЛАУ
1
1 0
1
1 1
...
( ) , 1, .
... 1
m m
m i m i
i
n n
n i n i i
b b b
W i
a a a
−
−
−
−
+ + +
= =
+ + + +
δ δ
δ η
δ δ δ
Необходимые и достаточные условия существования единственно-
го решения при заданной форме сводятся к назначению всех узлов ин-
Страницы
- « первая
- ‹ предыдущая
- …
- 39
- 40
- 41
- 42
- 43
- …
- следующая ›
- последняя »
