Колебания и волны. Алешкевич В.А - 62 стр.

UptoLike

Рубрика: 

61
Ëåêöèÿ 3
Ïîäñòàâëÿÿ (3.48) â (3.47), ïîëó÷èì
.02
1,0,0
2
1,0
=
ω
+
+
nnn
ss
F
ma
s
(3.49)
Ïîñêîëüêó n= 1, 2, 3, ..., N, òî (3.49) ïðåäñòàâëÿåò ñîáîé ñèñòåìó N ëèíåéíûõ
îäíîðîäíûõ óðàâíåíèé.
Èç óñëîâèÿ ðàâåíñòâà
íóëþ åå îïðåäåëèòåëÿ
ìîæíî ðàññ÷èòàòü âñå N
íîðìàëüíûõ ÷àñòîò, à çà-
òåì äëÿ êàæäîé èç ýòèõ
÷àñòîò îïðåäåëèòü ðàñ-
ïðåäåëåíèå àìïëèòóä â
êàæäîé ìîäå, ÷èñëî êîòîðûõ, î÷åâèäíî, áóäåò ðàâíî N.
Ìû æå èñïîëüçóåì óæå îïèñàííûé ðàíåå áîëåå ëåãêèé ïóòü è áóäåì èñêàòü êîí-
ôèãóðàöèþ êàæäîé ìîäû â âèäå «ñèíóñîèäàëüíîé» êîíôèãóðàöèè:
,sin)(
00
xsxs k=
èëè
),(
00
nn
xss
=
(3.50)
ãäå
Naxnaxaxax
Nn
==== ,...,,...,2 ,
21
.
Óáåäèìñÿ, ÷òî êîíôèãóðàöèÿ (3.50) óäîâëåòâîðÿåò óðàâíåíèþ (3.49), êîòîðîå
ïåðåïèøåì â âèäå:
,
2
2
22
,0
1,01,0
ω
=
+
+
n
nn
s
ss
(3.51)
ãäå
ma
F
=
2
.
Ïîäñòàâèì (3.50) â ëåâóþ ÷àñòü (3.51):
.
2
cos2
sin
)1(sin)1(sin
2
22
ω
==
++
a
na
anan
k
k
kk
(3.52)
Î÷åâèäíî, ÷òî (3.50) óäîâëåòâîðèò óðàâíåíèþ (3.49), åñëè ïîäîáðàòü äëÿ äàííî-
ãî
k
ïîäõîäÿùóþ ÷àñòîòó
ω
.
Ïàðàìåòð
k
íàçîâåì âîëíîâûì ÷èñëîì. Îáúÿñíåíèå ýòîìó áóäåò äàíî â ïîñëå-
äóþùèõ ëåêöèÿõ. Ýòîò ïàðàìåòð äîëæåí áûòü òàêèì, ÷òîáû íà êîíöàõ çàêðåïëåííîãî
øíóðà óäîâëåòâîðÿëèñü ãðàíè÷íûå óñëîâèÿ. Ïðè x=0 ýòè óñëîâèÿ âûïîëíÿþòñÿ:
0)0sin( =k
. Íà äðóãîì êîíöå, ãäå
)1( += Nax
, ïîòðåáóåì, ÷òîáû
0)1(sin =+Nak
, (3.53)
îòêóäà ïîëó÷àåì:
,)1(
π=+
pNa
p
k
èëè
,
)1( +
π
=
Na
p
p
k
(3.54)
ãäå öåëîå ÷èñëî p = I, II, ..., N õàðàêòåðèçóåò íîìåð ìîäû (êîëè÷åñòâî ìîä, êàê áûëî
ïîêàçàíî âûøå, ðàâíî N). Êàæäîé p-îé ìîäå ñîîòâåòñòâóåò ñâîÿ ÷àñòîòà, êîòîðàÿ ëåãêî
íàõîäèòñÿ èç óðàâíåíèÿ (3.52):
.
1
cos12)cos1(2
222
+
π
==ω
N
p
a
pp
k
(3.55)
0 x
n 1
x
n
x
n +1
s
n
s
n +1
s
n 1
q
2
q
1
s
x
Ðèñ. 3.16.
Ëåêöèÿ 3                                                                          61
        Ïîäñòàâëÿÿ (3.48) â (3.47), ïîëó÷èì
                                         maω2 
                        − s0,n−1 +  2 −       s0,n − s0,n+1 = 0.
                                               
                                                                                (3.49)
                                          F   
       Ïîñêîëüêó n = 1, 2, 3, ..., N, òî (3.49) ïðåäñòàâëÿåò ñîáîé ñèñòåìó N ëèíåéíûõ
îäíîðîäíûõ óðàâíåíèé. s
Èç óñëîâèÿ ðàâåíñòâà
íóëþ åå îïðåäåëèòåëÿ
                                                q1            q2
ìîæíî ðàññ÷èòàòü âñå N
íîðìàëüíûõ ÷àñòîò, à çà-                                   sn
                                                                    sn + 1
òåì äëÿ êàæäîé èç ýòèõ                     sn – 1
÷àñòîò îïðåäåëèòü ðàñ- 0                 xn – 1         xn       xn +1          x
ïðåäåëåíèå àìïëèòóä â                              Ðèñ. 3.16.
êàæäîé ìîäå, ÷èñëî êîòîðûõ, î÷åâèäíî, áóäåò ðàâíî N.
        Ìû æå èñïîëüçóåì óæå îïèñàííûé ðàíåå áîëåå ëåãêèé ïóòü è áóäåì èñêàòü êîí-
ôèãóðàöèþ êàæäîé ìîäû â âèäå «ñèíóñîèäàëüíîé» êîíôèãóðàöèè:
                            s 0 ( x ) = s 0 sin kx, èëè s 0 n = s 0 ( x n ),   (3.50)
ãäå x1 = a, x2 = 2a,..., xn = na,..., x N = Na .
         Óáåäèìñÿ, ÷òî êîíôèãóðàöèÿ (3.50) óäîâëåòâîðÿåò óðàâíåíèþ (3.49), êîòîðîå
ïåðåïèøåì â âèäå:
                                    s0,n+1 + s0,n−1 2Ω 2 − ω2
                                                   =          ,             (3.51)
                                          s 0, n       Ω2
         F
ãäå Ω 2 =   .
         ma
        Ïîäñòàâèì (3.50) â ëåâóþ ÷àñòü (3.51):
                  sin k ( n + 1) a + sin k (n − 1)a              2Ω 2 − ω 2
                                                    = 2 cos ka =            .  (3.52)
                               sin kna                             Ω2
        Î÷åâèäíî, ÷òî (3.50) óäîâëåòâîðèò óðàâíåíèþ (3.49), åñëè ïîäîáðàòü äëÿ äàííî-
ãî k ïîäõîäÿùóþ ÷àñòîòó ω .
        Ïàðàìåòð k íàçîâåì âîëíîâûì ÷èñëîì. Îáúÿñíåíèå ýòîìó áóäåò äàíî â ïîñëå-
äóþùèõ ëåêöèÿõ. Ýòîò ïàðàìåòð äîëæåí áûòü òàêèì, ÷òîáû íà êîíöàõ çàêðåïëåííîãî
øíóðà óäîâëåòâîðÿëèñü ãðàíè÷íûå óñëîâèÿ. Ïðè x = 0 ýòè óñëîâèÿ âûïîëíÿþòñÿ:
sin( k ⋅ 0) = 0 . Íà äðóãîì êîíöå, ãäå x = a ( N + 1) , ïîòðåáóåì, ÷òîáû
                                        sin ka ( N + 1) = 0 ,                  (3.53)
îòêóäà ïîëó÷àåì:
                                                                pπ
                          k p a ( N + 1) = p ⋅ π, èëè k p =            ,       (3.54)
                                                            a ( N + 1)
ãäå öåëîå ÷èñëî p = I, II, ..., N õàðàêòåðèçóåò íîìåð ìîäû (êîëè÷åñòâî ìîä, êàê áûëî
ïîêàçàíî âûøå, ðàâíî N). Êàæäîé p-îé ìîäå ñîîòâåòñòâóåò ñâîÿ ÷àñòîòà, êîòîðàÿ ëåãêî
íàõîäèòñÿ èç óðàâíåíèÿ (3.52):
                                                                   pπ 
                     ω 2p = 2Ω 2 (1 − cos k p a ) = 2Ω 2 1 − cos        .    (3.55)
                                                                  N +1