Колебания и волны. Алешкевич В.А - 72 стр.

UptoLike

Рубрика: 

71
Ëåêöèÿ 4
Âîëíîâîå óðàâíåíèå. Óðàâíåíèå áåãóùåé ãàðìîíè÷åñêîé âîëíû â îäíîðîäíîì
øíóðå, ãäå äèñïåðñèÿ îòñóòñòâóåò
)(
0
kc=ω
, ïî àíàëîãèè ñ (4.16) èìååò âèä:
.sin)sin(),(
0
00
ω=ω=
c
x
tsxtstxs mm k
(4.25)
Çíàê «» ñîîòâåòñòâóåò âîëíå, áåãóùåé â ïîëîæèòåëüíîì íàïðàâëåíèè ïî îñè Ox, à çíàê
«+»  â îòðèöàòåëüíîì.
 áîëåå îáùåì ñëó÷àå ðàñïðîñòðàíåíèÿ ïðîèçâîëüíîãî èìïóëüñà (ãðóïïû âîëí),
äâèãàþùåãîñÿ ñ òîé æå ñêîðîñòüþ
0
c
, óðàâíåíèå âîëíû ìîæíî çàïèñàòü â âèäå:
=
0
),(
c
x
tstxs m
, (4.26)
ãäå
)(θs
 ïðîèçâîëüíàÿ ôóíêöèÿ ñâîåãî àðãóìåíòà
0
/
cxt m=θ
.
Ïîêàæåì, ÷òî çàêîí äâèæåíèÿ øíóðà (4.26) è, êîíå÷íî, åãî ÷àñòíûé ñëó÷àé (4.25)
ÿâëÿþòñÿ ðåøåíèÿìè íåêîòîðîãî óðàâíå-
íèÿ äâèæåíèÿ, êîòîðîå íàçûâàåòñÿ âîëíî-
âûì óðàâíåíèåì. Ýòî âîëíîâîå óðàâíåíèå
ìîæíî ïîëó÷èòü ïðåäåëüíûì ïåðåõîäîì èç
óðàâíåíèÿ (3.47).
Íà ðèñ. 4.8 ïîêàçàí ôðàãìåíò êî-
ëåáëþùåãîñÿ øíóðà. Íà ýòîì ôðàãìåí-
òå èçîáðàæåíû òðè îòðåçêà øíóðà äëè-
íîé
x
è ìàññîé dm êàæäûé. Ñìåùåíèÿ ýòèõ îòðåçêîâ â íåêîòîðûé ïðîèçâîëüíûé ìî-
ìåíò âðåìåíè ðàâíû
),,(
1
txxss
n
=
),,( txss
n
= ).,(
1
txxss
n
+=
+
Óñêîðåíèå öåíò-
ðàëüíîãî îòðåçêà
2
2
),(
t
txs
s
n
=
&&
. Îíî çàïèñàíî â âèäå âòîðîé ÷àñòíîé ïðîèçâîäíîé ôóí-
êöèè s(x,t) ïî âðåìåíè. Ó÷òåì äàëåå, ÷òî
.
),(),(
limlim
2
d
0
1
0
x
x
x
nn
a
x
s
x
txstxxs
a
ss
+
+
=
+
=
(4.27à)
.
),(),(
limlim
2
d
0
1
0
x
x
x
nn
a
x
s
x
txxstxs
a
ss
=
=
(4.27á)
Îáðàòèì âíèìàíèå, ÷òî ñèëà
2/dxx
x
s
F
+
ÿâëÿåòñÿ ïðîåêöèåé íà íàïðàâëåíèå
ñìåùåíèÿ s ñèëû F, ïðèëîæåííîé ê öåíòðàëüíîìó ýëåìåíòó ñïðàâà (â òî÷êå
2/dxx +
).
Àíàëîãè÷íî, ñëåâà (â òî÷êå
2/dxx
) ïðîåêöèÿ ýòîé ñèëû ðàâíà
2/dxx
x
s
F
. Ðàâíî-
äåéñòâóþùàÿ ýòèõ ñèë, î÷åâèäíî, îïðåäåëÿåòñÿ ïðèðàùåíèåì ïåðâîé ïðîèçâîäíîé íà
äëèíå áåñêîíå÷íî ìàëîãî ýëåìåíòà dx:
.
d
2/d2/d
2
2
=
+
xxxx
x
s
x
s
m
F
t
s
(4.28)
Ðèñ. 4.8.
0 x
sxt(, )
0
dm
s
n 1
s
n
s
n +1
x x
D
x
xx
+
D
Ëåêöèÿ 4                                                                                                                        71
         Âîëíîâîå óðàâíåíèå. Óðàâíåíèå áåãóùåé ãàðìîíè÷åñêîé âîëíû â îäíîðîäíîì
øíóðå, ãäå äèñïåðñèÿ îòñóòñòâóåò (ω = c 0 k ) , ïî àíàëîãèè ñ (4.16) èìååò âèä:
                                                                     x 
                      s ( x, t ) = s 0 sin(ωt m kx ) = s 0 sin ω t m . (4.25)
                                                                 c 0 
Çíàê «–» ñîîòâåòñòâóåò âîëíå, áåãóùåé â ïîëîæèòåëüíîì íàïðàâëåíèè ïî îñè Ox, à çíàê
«+» — â îòðèöàòåëüíîì.
        áîëåå îáùåì ñëó÷àå ðàñïðîñòðàíåíèÿ ïðîèçâîëüíîãî èìïóëüñà (ãðóïïû âîëí),
äâèãàþùåãîñÿ ñ òîé æå ñêîðîñòüþ c 0 , óðàâíåíèå âîëíû ìîæíî çàïèñàòü â âèäå:

                                                   x 
                                s ( x, t ) = s t m  ,                                                                     (4.26)
                                                c0 
ãäå s (θ) — ïðîèçâîëüíàÿ ôóíêöèÿ ñâîåãî àðãóìåíòà θ = t m x / c0 .
        Ïîêàæåì, ÷òî çàêîí äâèæåíèÿ øíóðà (4.26) è, êîíå÷íî, åãî ÷àñòíûé ñëó÷àé (4.25)
ÿâëÿþòñÿ ðåøåíèÿìè íåêîòîðîãî óðàâíå- s(x,t0)
                                                                   dm
íèÿ äâèæåíèÿ, êîòîðîå íàçûâàåòñÿ âîëíî-
âûì óðàâíåíèåì. Ýòî âîëíîâîå óðàâíåíèå
ìîæíî ïîëó÷èòü ïðåäåëüíûì ïåðåõîäîì èç                    sn –1 sn    sn +1
óðàâíåíèÿ (3.47).
      Íà ðèñ. 4.8 ïîêàçàí ôðàãìåíò êî-
ëåáëþùåãîñÿ øíóðà. Íà ýòîì ôðàãìåí-                                       0                        x – Dx x         x + Dx         x
òå èçîáðàæåíû òðè îòðåçêà øíóðà äëè-                                                                Ðèñ. 4.8.
íîé ∆x è ìàññîé dm êàæäûé. Ñìåùåíèÿ ýòèõ îòðåçêîâ â íåêîòîðûé ïðîèçâîëüíûé ìî-
ìåíò âðåìåíè ðàâíû s n−1 = s ( x − ∆x, t ), s n = s ( x, t ), s n +1 = s ( x + ∆x, t ). Óñêîðåíèå öåíò-
                             ∂ 2 s ( x, t )
ðàëüíîãî îòðåçêà &s&n =        . Îíî çàïèñàíî â âèäå âòîðîé ÷àñòíîé ïðîèçâîäíîé ôóí-
                         ∂t 2
êöèè s(x,t) ïî âðåìåíè. Ó÷òåì äàëåå, ÷òî

                           s n +1 − s n         s ( x + ∆x, t ) − s ( x, t ) ∂s
                      lim               = lim                               =                                   .            (4.27à)
                      a →0       a        ∆x →0           ∆x                  ∂x                      x+
                                                                                                           dx
                                                                                                           2

                             s n − s n −1          s ( x, t ) − s ( x − ∆x, t ) ∂s
                       lim                = lim                                =                                .            (4.27á)
                      a →0        a         ∆x → 0              ∆x               ∂x                   x−
                                                                                                           dx
                                                                                                           2
                                      ∂s
         Îáðàòèì âíèìàíèå, ÷òî ñèëà F ⋅            ÿâëÿåòñÿ ïðîåêöèåé íà íàïðàâëåíèå
                                      ∂x x +dx / 2
ñìåùåíèÿ s ñèëû F, ïðèëîæåííîé ê öåíòðàëüíîìó ýëåìåíòó ñïðàâà (â òî÷êå x + dx / 2 ).
                                                               ∂s
Àíàëîãè÷íî, ñëåâà (â òî÷êå x − dx / 2 ) ïðîåêöèÿ ýòîé ñèëû ðàâíà − F ⋅      . Ðàâíî-
                                                               ∂x x −dx / 2
äåéñòâóþùàÿ ýòèõ ñèë, î÷åâèäíî, îïðåäåëÿåòñÿ ïðèðàùåíèåì ïåðâîé ïðîèçâîäíîé íà
äëèíå áåñêîíå÷íî ìàëîãî ýëåìåíòà dx:
                                     ∂2s           F  ∂s                     ∂s              
                                              =                          −                   .                              (4.28)
                                     ∂t   2
                                                  dm  ∂x   x + dx / 2       ∂x              
                                                                                   x − dx / 2 