Задачи по квантовой механике. Часть 2. Алмалиев А.Н - 18 стр.

UptoLike

Ψ
a
(r) a
r Ψ
a
(r)
a
Ψ
a
(r)
a Ψ
a
(r)
a c
a
(G
n
)
Ψ
a
(r)
Ψ
a
(r) =
X
n
c
a
(G
n
G
n
(r)
Φ
G
n
(r)
ˆ
G
ˆ
GΦ
G
n
= G
n
Φ
G
n
Ψ
a
(r) Ψ
a
(r)
c
a
(G
n
)
c
a
(G
n
) Ψ
a
(r)
Ψ
a
(r) c
a
(G
n
)
c
a
(G
n
) =
Z
Φ
F
n
(r
a
(r) d
3
r.
c
a
(G
n
)
a G |c
a
(G
n
)|
2
G
G
a
ˆ
G
G
n
Ψ
a
(r) =
Z
c
a
(G
G
(r) dG;
Ãëàâà 2

Îñíîâû òåîðèè ïðåäñòàâëåíèé

2.1 Ïðåäñòàâëåíèå âîëíîâîé ôóíêöèè
Çàäàíèå âîëíîâîé ôóíêöèè Ψa (r) ( a  íàáîð êâàíòîâûõ ÷èñåë) â êîíôè-
ãóðàöèîííîì ïðîñòðàíñòâå (êîîðäèíàòà r â àðãóìåíòå Ψa (r)) íå ÿâëÿåòñÿ
åäèíñòâåííûì. Ôàêòè÷åñêè äëÿ äàííîãî ñîñòîÿíèÿ ñóùåñòâåííûì ÿâëÿ-
åòñÿ ëèøü íàáîð êâàíòîâûõ ÷èñåë  a (èíäåêñ ñîñòîÿíèÿ). Ñàì æå âèä
âîëíîâîé ôóíêöèè Ψa (r) âòîðè÷åí è ïðåäñòàâëÿåò ñîáîé ëèøü ìàòåìà-
òè÷åñêîå èçîáðàæåíèå äàííîãî ñîñòîÿíèÿ  a. Âìåñòî Ψa (r) äëÿ îïèñà-
íèÿ ñîñòîÿíèÿ  a ìîæíî èñïîëüçîâàòü êîýôôèöèåíòû ca (Gn ) ðàçëîæå-
íèÿ Ψa (r)
                               X
                      Ψa (r) =     ca (Gn )ΦGn (r)                 (2.1)
                                 n

ïî ïîëíîé ñèñòåìå ñîáñòâåííûõ ôóíêöèé ΦGn (r) ëþáîãî ýðìèòîâà îïåðà-
òîðà Ĝ (ĜΦGn = Gn ΦGn ), äåéñòâóþùåãî â òîì æå ïðîñòðàíñòâå, â êî-
òîðîì îïðåäåëåíû ôóíêöèè Ψa (r). Ýòî ñëåäóåò èç òîãî, ÷òî ìåæäó Ψa (r)
è íàáîðîì êîýôôèöèåíòîâ ca (Gn ) ñóùåñòâóåò âçàèìíî îäíîçíà÷íîå ñîîò-
âåòñòâèå: çàäàíèå ca (Gn ) îäíîçíà÷íî îïðåäåëÿåò Ψa (r) ïî ôîðìóëå (2.1),
à çíàíèå Ψa (r) ïîçâîëÿåò íàéòè âñå ca (Gn ):
                                 Z
                       ca (Gn ) = Φ∗Fn (r)Ψa (r) d3 r.              (2.2)

   Óïîðÿäî÷åííûé íàáîð ca (Gn ) íàçûâàåòñÿ âîëíîâîé ôóíêöèåé ñîñòî-
ÿíèÿ  a â G-ïðåäñòàâëåíèè. Âåëè÷èíà |ca (Gn )|2 (ò.å. êâàäðàò ìîäóëÿ
âîëíîâîé ôóíêöèè â G-ïðåäñòàâëåíèè) äàåò ðàñïðåäåëåíèå âåðîÿòíîñòåé
ðàçëè÷íûõ çíà÷åíèé âåëè÷èíû G â ñîñòîÿíèè, õàðàêòåðèçóåìîì íàáîðîì
êâàíòîâûõ ÷èñåë  a.
   Îòìåòèì, ÷òî âñå ñêàçàííîå çäåñü ñïðàâåäëèâî äëÿ îïåðàòîðà Ĝ êàê
ñ äèñêðåòíûì, òàê è ñ íåïðåðûâíûì ñïåêòðîì.  ïîñëåäíåì ñëó÷àå Gn
ÿâëÿåòñÿ íåïðåðûâíîé âåëè÷èíîé, à ñóììèðîâàíèå â (2.1) çàìåíÿåòñÿ èí-
òåãðèðîâàíèåì:
                              Z
                      Ψa (r) = ca (G)ΦG (r) dG;                   (2.3)


                                     18