Задачи по квантовой механике. Часть 2. Алмалиев А.Н - 23 стр.

UptoLike

E
0
= 0 E
±1
w
0
= |c(E
0
)|
2
=
18
19
;
w
±1
= 2|c(E
±1
)|
2
=
1
19
P
m
w
m
= 1
¤
m
a
c
n
=
1
2
r
}
3
a
3
π
(1)
n
e
ipa/}
1
(pa)
2
(π}n)
2
n = 0, 1, . . .
m ω
c
0
(p) =
1
p
p
0
π
e
ξ
2
/2
ξ =
p
p
0
p
2
0
= m}ω
m
a Ψ(x) =
r
30
a
5
x(x a)
C
n
=
240
π
3
1 + (1)
n+1
n
3
hEi = 5
}
2
ma
2
p
h(∆E)
2
i =
5
}
2
ma
2
n = 0, 1, . . .
P
k=0
(2k + 1)
4
= π
4
/96
P
k=0
(2k + 1)
2
= π
2
/8
L
2
f
El
(r)
Y
lm
(θ, ϕ) L
z
s
2l + 1
2
(l |m|)!
(l + |m|)!
P
m
l
(cos θ) P
m
l
(x)
ýíåðãèè: E0 = 0 (îñíîâíîå ñîñòîÿíèå) èëè E±1 (ïåðâîå âîçáóæäåííîå ñî-
ñòîÿíèå). Âåðîÿòíîñòè èõ îáíàðóæåíèÿ
                                18
             w0 = |c(E0 )|2 =      ;
                                19
                                        1
             w±1 = 2|c(E±1 )|2 =          (äâóêðàòíîå âûðîæäåíèå).
                                       19
                                                                     P
Êàê è ñëåäîâàëî îæèäàòü, âûïîëíÿåòñÿ óñëîâèå íîðìèðîâêè                  wm = 1.
                                                                     m
                                                                               ¤


Çàäà÷è äëÿ ñàìîñòîÿòåëüíîãî ðåøåíèÿ

12. ×àñòèöà ìàññû m íàõîäèòñÿ â áåñêîíå÷íî ãëóáîêîé ïðÿìîóãîëü-
íîé ïîòåíöèàëüíîé ÿìå øèðèíîé a. Íàéòè âîëíîâûå ôóíêöèè ñòà-
öèîíàðíûõ
  r        ñîñòîÿíèé â èìïóëüñíîì ïðåäñòàâëåíèè (Îòâåò : cn =
1 }3 a3 (−1)n e−ipa/} − 1
                          ; n = 0, 1, . . . ).
2    π (pa)2 − (π}n)2
13. Ëèíåéíûé ãàðìîíè÷åñêèé îñöèëëÿòîð (ìàññà  m, ÷àñòîòà  ω ) íàõî-
äèòñÿ â îñíîâíîì ñîñòîÿíèè. Íàéòè èìïóëüñíîå ïðåäñòàâëåíèå âîëíîâîé
                             1      2       p 2
ôóíêöèè. (Îòâåò : c0 (p) = p √ e−ξ /2 ; ξ =   ; p = m}ω .; Óêàçàíèå :
                            p0 π            p0 0
ñì. ïðèìåð 2.1).
14. ×àñòèöà ìàññû m íàõîäèòñÿ â áåñêîíå÷íî ãëóáîêîé
                                               r ïîòåíöèàëüíîé
                                                             30
ÿìå øèðèíîé a è ïðèâåäåíà â ñîñòîÿíèå Ψ(x) =                    x(x − a). Íàé-
                                                             a5
òè åãî ýíåðãåòè÷åñêîå ïðåäñòàâëåíèå, ñðåäíåå √     çíà÷åíèå ýíåðãèè, à òàêæå
                                               240 1 + (−1)n+1            }2
ôëóêòóàöèþ ýíåðãèè (Îòâåò : Cn = − 3                            ; hEi = 5     ;
                                              π         n3                ma2
p             √ }2                                    P∞
        2
  h(∆E) i = 5          ; n = 0, 1, . . . . Óêàçàíèå :     (2k + 1)−4 = π 4 /96;
                  ma2                                 k=0
P∞
   (2k + 1)−2 = π 2 /8).
k=0

15. Çàïèñàòü âîëíîâóþ ôóíêöèþ ÷àñòèöû â öåíòðàëüíîì ïîëå â L2 -
ïðåäñòàâëåíèè. (Îòâåò : Ðàäèàëüíàÿ ôóíêöèÿ fEl (r)).
16. Çàïèñàòü
     s       ñôåðè÷åñêóþ ôóíêöèþ Ylm (θ, ϕ) â Lz -ïðåäñòàâëåíèè. (Îò-
        2l + 1 (l − |m|)! m
âåò :                    Pl (cos θ), ãäå Plm (x)  ïðèñîåäèíåííûé ïîëèíîì
           2 (l + |m|)!

                                          23