Введение в математический анализ в вопросах и задачах. Анчиков А.М - 24 стр.

UptoLike

z =
(cos
π
3
i sin
π
3
)(
3 + i)
i 1
.
z
1
= (cos
π
3
i sin
π
3
)
1 ϕ
1
=
π
3
. z
2
=
3 + i 2
ϕ
2
=
3
4
. z
3
= i 1
2
3π
4
.
|z| =
|z
1
||z
2
|
z
3
=
1 · 2
2
=
2, ϕ = ϕ
1
+ ϕ
2
ϕ
3
=
π
3
+
π
6
3
4
π =
=
11
12
π. z =
2(cos
11
12
π i sin
11
12
π).
z =
3 i.
r = |z| = 2, ϕ =
π
6
.
(
3i)
9
= 2
9
[cos(
π
6
·9)+i sin(
π
6
·9)] = 2
9
[cos
3
2
πi sin
3
2
π] = 512i.
4
16.
z = 16
z = 16 = 16(cos π + i sin π).
w
0
= 2(cos
π
4
+ i sin
π
4
) =
2 + i
2,
w
1
= 2(cos
3π
4
+ i sin
3π
4
) =
2 + i
2,
w
2
= 2(cos
5π
4
+ i sin
5π
4
) =
2 i
2,
   Ïðèìåð 13. Çàïèñàòü â òðèãîíîìåòðè÷åñêîé ôîðìå êîì-
ïëåêñíîå ÷èñëî
                                          √
                     (cos π3 − i sin π3 )( 3 + i)
                  z=                              .
                                i−1
   Ðåøåíèå. ×èñëî z1 = (cos π3 −i sin π3 ) èìååò ìîäóëü, ðàâíûé
                                     √
1 è àðãóìåíò ϕ1 = − π3 . ×èñëî z2 = 3 + i èìååò ìîäóëü 2
                                                     √
è àðãóìåíò ϕ2 = − 43 . ×èñëî z3 = i − 1 èìååò ìîäóëü   2 è
          3π
àðãóìåíò 4 . Ïîýòîìó

     |z1 | |z2 |   1·2 √                             π π 3
|z| =            = √ = 2, ϕ = ϕ1 + ϕ2 − ϕ3 = − + − π =
        z3           2                               3 6 4
                               √
= − 11
    12
       π.   Ñëåäîâàòåëüíî, z =   2(cos 11
                                       12
                                                    11
                                          π − i sin 12 π).
   Ïðèìåð 14. Âîçâåñòè â äåâÿòóþ ñòåïåíü êîìïëåêñíîå ÷èñëî
     √
z=       3 − i.
   Ðåøåíèå. r = |z| = 2, ϕ = − π6 .
 √                 π           π              3       3
( 3−i)9 = 29 [cos(− ·9)+i sin(− ·9)] = 29 [cos π−i sin π] = 512i.
                   6           6              2       2
                                      √
   Ïðèìåð 15. Íàéòè âñå çíà÷åíèÿ 4 −16.
   Ðåøåíèå. Çàïèøåì ÷èñëî z = −16 â òðèãîíîìåòðè÷åñêîé
ôîðìå: z = −16 = 16(cos π + i sin π). Ñîãëàñíî ôîðìóëàì (28)
ïîëó÷àåì:
                         π        π   √     √
             w0 = 2(cos + i sin ) = 2 + i 2,
                         4        4
                      3π         3π     √     √
           w1 = 2(cos     + i sin ) = − 2 + i 2,
                       4          4
                      5π         5π     √     √
          w2 = 2(cos      + i sin ) = − 2 − i 2,
                       4          4

                                 24