ВУЗ:
Составители:
Рубрика:
a) x
n
= sin n; b) x
n
= (−1)
n
; c) x
n
= (−1)
n
1
n
; d) x
n
=
=
(−1)
n
n
+
1+(−1)
n
2
.
”ε −n
ε
” n
ε
a) lim
n→∞
3n
n+5
= 3; b) lim
n→∞
cos 3n
n
= 0; c) lim
n→∞
2
n
−7·6
n
3
n
+6
n
= −7;
d) lim
n→∞
3n
2
+2
4n
2
−1
=
3
4
; e) lim
n→∞
5·3
n
3
n
−2
= 5; f) lim
n→+∞
log
n
2 = 0.
”ε − n
ε
”
{x
n
} a :
a) x
n
=
(−1)
n+1
n
, a = 0; b) x
n
=
2+(−1)
n
n
, a = 0; c) x
n
=
n
2
+n−2
3n
2
+2n−4
,
a =
1
3
; d) x
n
=
n
√
c (c > 1), a = 1.
h
a) n
ε
= [
1
ε
]; b) n
ε
= [
3
ε
]; c) n
ε
= [
1
ε
]; d) n
ε
= [
1
log
c
(1+ε)
]
i
.
a) lim
n→∞
n
√
a = 1, (a > 0); b) lim
n→∞
n
√
n = 1;
c) lim
n→∞
(
1
2
·
3
4
· ... ·
2n−1
2n
) = 0; d) lim
n→∞
q
n
= 0, (|q| < 1).
{x
n
}
lim
n→∞
x
n
lim
n→∞
x
n
, a) x
n
= 1 −
1
n
; b) x
n
= (−1)
n
(2 +
3
n
); c)x
n
= (−1)
n
; d) x
n
= n
(−1)
n
; e) x
n
= 1 +
n
n+1
cos
nπ
2
.
[ a) 0, 1; b) − 2, +2; c) − 1, +1; d) lim
n→∞
x
n
=
0, lim
n→∞
x
n
= ∞; e) −1, 0; +1, e) lim
n→∞
x
n
= −1, lim
n→∞
x
n
= ∞ ].
{x
n
}, x
n
=
1
√
n
2
+1
+
1
√
n
2
+2
+ ... +
1
√
n
2
+n
.
z
n
< x
n
< y
n
, z
n
=
n
√
n
2
+n
, y
n
=
n
√
n
2
+1
a) xn = sin n; b) xn = (−1)n ; c) xn = (−1)n n1 ; d) xn = n n = (−1) n + 1+(−1) 2 . Êàêèå èç íèõ îãðàíè÷åíû, ñõîäÿòñÿ. Îòâåòû îáîñíóéòå. 2. Ïîëüçóÿñü ÿçûêîì ”ε − nε ” äîêàæèòå, ÷òî: (óêàæèòå nε ) 3n n n a) n→∞ lim n+5 lim cosn3n = 0; c) n→∞ = 3; b) n→∞ lim 23n−7·6 +6n = −7; 3n2 +2 5·3n d) lim 2 = 34 ; e) lim n = 5; f ) lim logn 2 = 0. n→∞ 4n −1 n→∞ 3 −2 n→+∞ 3. Ñ ïîìîùüþ ”ε − nε ” ðàññóæäåíèé äîêàçàòü ñõîäèìîñòü ïîñëåäîâàòåëüíîñòè {xn } ê a : (−1)n+1 n n2 +n−2 a) xn = n a = 0; b) xn = 2+(−1) , n , a = 0; c) xn = 3n2 +2n−4 , √ a = 13 ; d) xn = n c (c > 1), a = 1. h i a) nε = [ 1ε ]; b) nε = [ 3ε ]; c) nε = [ 1ε ]; d) nε = [ log (1+ε) 1 ] . c √ √ 4. Äîêàæèòå, ÷òî: a) lim n a = 1, (a > 0); b) lim n n = 1; n→∞ n→∞ c) lim ( 12 · 34 · ... · 2n−1 2n ) = 0; d) lim q n = 0, (|q| < 1). n→∞ n→∞ 5. Äëÿ ïîñëåäîâàòåëüíîñòè {xn } íàéòè âñå ïðåäåëüíûå òî÷- êè, lim xn è lim xn , åñëè a) xn = 1 − n1 ; b) xn = (−1)n (2 + n→∞ n→∞ 3 n n n ); c)x n = (−1) ; d) xn = n(−1) ; e) xn = 1 + n+1 n cos nπ 2 . [ a) 0, 1; b) − 2, +2; c) − 1, +1; d) lim xn = n→∞ 0, lim xn = ∞; e) − 1, 0; +1, e) lim xn = −1, lim xn = ∞ ]. n→∞ n→∞ n→∞ 6. Íàéòè ïðåäåë ïîñëåäîâàòåëüíîñòè {xn }, åñëè xn = √ 1 + √n12 +2 + ... + √n12 +n . n2 +1 [ Óêàçàíèå: zn < xn < yn , zn = √ n , yn = √ n ]. n2 +n n2 +1 38
Страницы
- « первая
- ‹ предыдущая
- …
- 36
- 37
- 38
- 39
- 40
- …
- следующая ›
- последняя »