Введение в математический анализ в вопросах и задачах. Анчиков А.М - 50 стр.

UptoLike

z
n
= (1 + i
ϕ
n
)
n
z
n
= r
n
e
n
,
r
n
=
¯
¯
¯(1 + i
ϕ
n
)
n
¯
¯
¯= (1 +
ϕ
2
n
2
)
n
2
,
ϕ
n
= arg(1 + i
ϕ
n
)
n
= n · arg(1 + i
ϕ
n
) = n · arctg
ϕ
n
.
lim
n→∞
r
n
= lim
n→∞
[(1 +
ϕ
2
n
2
)
n
2
ϕ
2
]
ϕ
2
2n
= e
lim
n→∞
ϕ
2
2n
= 1,
lim
n→∞
ϕ
n
= lim
n→∞
n · arctg
ϕ
n
= ϕ · lim
n→∞
arctg
ϕ
n
ϕ
n
= ϕ.
lim
n→∞
(1 + i
ϕ
n
)
n
= 1 · (cos ϕ + i sin ϕ) = e
.
a) lim
n→∞
= (i +
2+i
n
); b) lim
n→∞
1ni
1+3ni
;
c) lim
n→∞
[3
n
+ i(1
2
n
)]; d) lim
n→∞
n
P
k=0
i
k
3
k
.
[ a) i; b)
1
3
; c) ; d)
3
10
· (3 + i) ].
{z
n
}
a) z
n
= i
n
; b) z
n
=
1
2
[i
n
+ (i)
n
].
{z
n
}, z
n
=
1
2
(1 + i
n
)
a) z
n
= z
n
, | z | < 1; b) z
n
=
z
n
1+z
2n
, | z | < 1.
[ a) 0; b) 0 ].
   Ðåøåíèå. ×ëåíû ïîñëåäîâàòåëüíîñòè zn = (1 + i ϕn )n ïðåä-
ñòàâèì
     ¯
        â ïîêàçàòåëüíîé
                   ¯
                                ôîðìå: zn = rn eiϕn , ãäå
     ¯             ¯          2   n
rn = ¯(1 + i ϕn )n ¯ = (1 + ϕn2 ) 2 ,
ϕn = arg(1 + i ϕn )n = n · arg(1 + i ϕn ) = n · arctg ϕn .
Äàëåå âû÷èñëèì ïðåäåëû:
                                  2                2
                             n
                       ϕ2 ϕ2 ϕ
                                  2     lim ϕ
                                            2n
 lim rn =
n→∞
             lim
            n→∞
                 [(1 + n 2 )   ] 2n = en→∞      = 1,
                                            arctg ϕ
lim ϕn =     lim n · arctg ϕn = ϕ · lim ϕ n =                ϕ.
n→∞         n→∞                       n→∞      n

Cëåäîâàòåëüíî,
 lim (1 + i ϕn )n = 1 · (cos ϕ + i sin ϕ) = eiϕ .
n→∞


   Ã. Çàäà÷è è óïðàæíåíèÿ äëÿ ñàìîñòîÿòåëüíîé
ðàáîòû.
   1. Âû÷èñëèòü ïðåäåëû:
                         2+i               1−ni
a) lim = (−i +            n
                             );   b) lim        ;
      n→∞                             n→∞ 1+3ni
                                              n k
                                              P
    lim [3n + i(1 − n2 )]; d) n→∞
c) n→∞                         lim              i
                                                3k
                                                   .
                                           k=0
                   1                      3
[ a) − i; b) −     3
                     ;     c) ∞; d)      10
                                              · (3 + i) ].
    2. Ïîêàçàòü, ÷òî {zn } îãðàíè÷åíà, íî ðàñõîäèòñÿ, åñëè
a) zn = in ; b) zn = 12 [in + (−i)n ].
   3. Ïîêàçàòü, ÷òî {zn }, ãäå zn = 12 (1 + in ) íå îãðàíè÷åíà,íî
íå ñõîäèòñÿ ê áåñêîíå÷íîñòè.
   4. Äîêàçàòü ñõîäèìîñòü è íàéòè ïðåäåë, åñëè
                                  zn
a) zn = z n , | z | < 1; b) zn = 1+z 2n , | z | < 1.


    [ a) 0;   b) 0 ].

                                         50