Введение в математический анализ в вопросах и задачах. Анчиков А.М - 55 стр.

UptoLike

b) 1
2x
1+x
2
1 x R .
(−∞, +) ,
[ 0, π ] .
c)
{y} = {0, 1}.
d)
1, 0, +1, {y} =
{−1, 0, +1}.
f(x) + f(y) = f(z). z,
a) f(x) =
1
x
; b) f(x) = log
1+x
1x
.
a)
1
x
+
1
y
=
1
z
z =
xy
x+y
, x 6= y.
b) log
1+x
1x
+ log
1+y
1y
= log
1+z
1z
,
(1+x)(1+y)
(1x)(1y)
=
1+z
1z
, z =
x+y
1+xy
.
f(x), f(
1
x
) = x+
1 + x
2
(x > 0).
z = 1/x. x = 1/z z > 0,
f(z) = 1/z +
q
1 + 1/z
2
= 1/z +
1 + z
2
|z|
=
1 +
1+z
2
z
.
f(x) =
1+
1+x
2
x
.
x = ϕ(y)
a) y =
1 x
2
1) 1
x 0; 2) 0 x 1; b) y = sh x = 1/2(e
x
e
x
)
a) [ 1, 0 ]
0 1
x
                             2x
   b) Î÷åâèäíî, ÷òî −1 ≤ 1+x    2 ≤ 1 ïðè ∀ x ∈ R . Ïîýòî-

ìó îáëàñòü îïðåäåëåíèÿ åñòü âñÿ ÷èñëîâàÿ îñü (−∞, +∞) , à
îáëàñòü çíà÷åíèé åñòü ñåãìåíò [ 0, π ] .
   c) Ôóíêöèÿ çàäàíà íà âñåé ÷èñëîâîé îñè à ìíîæåñòâî å¼
çíà÷åíèé ñîñòîèò èç äâóõ òî÷åê 0 è 1, òî åñòü {y} = {0, 1}. Ýòà
ôóíêöèÿ íàçûâàåòñÿ ôóíêöèåé Äèðèõëå.
   d) Ôóíêöèÿ çàäàíà íà âñåé ÷èñëîâîé îñè, ìíîæåñòâî å¼
çíà÷åíèé ñîñòîèò èç òðåõ òî÷åê: −1, 0, +1, òî åñòü {y} =
{−1, 0, +1}.
   Ïðèìåð 38. Ïóñòü f (x) + f (y) = f (z). Îïðåäåëèòü z, åñëè
a) f (x) = x1 ; b) f (x) = log 1+x
                               1−x
                                   .
   Ðåøåíèå. a) Èç óñëîâèÿ x1 + y1 = z1 íàõîäèì z =                 xy
                                                                  x+y
                                                                      ,    x 6= −y.
   b) Ïîòåíöèðóÿ ðàâåíñòâî log 1+x
                               1−x
                                   + log 1+y
                                         1−y
                                             = log 1+z
                                                   1−z
                                                       , íàõî-
           (1+x)(1+y)       1+z                   x+y
äèì, ÷òî   (1−x)(1−y)
                        =   1−z
                                ,   îòêóäà z =   1+xy
                                                      .
                                                          √
   Ïðèìåð 39. Íàéòè f (x), åñëè f ( x1 ) = x+ 1 + x2 (x > 0).
   Ðåøåíèå. Ïóñòü z = 1/x. Òîãäà x = 1/z è, òàê êàê z > 0,
                    q                             √                    √
                                                   1 + z2         1+    1+z 2
òî f (z) = 1/z +        1 + 1/z 2 = 1/z +           |z|
                                                              =        z
                                                                              .
                    √
                  1+ 1+x2
Îòñþäà f (x) =       x
                          .
   Ïðèìåð 40. Îïðåäåëèòü îáðàòíóþ ôóíêöèþ x = ϕ(y) è
                                      √
îáëàñòü å¼ ñóùåñòâîâàíèÿ, åñëè: a) y = 1 − x2 ïðè 1) − 1 ≤
x ≤ 0; 2) 0 ≤ x ≤ 1; b) y = sh x = 1/2(ex − e−x ) −
ãèïåðáîëè÷åñêèé ñèíóñ.
   Ðåøåíèå.      a) Íà ñåãìåíòå [ −1, 0 ] ôóíêöèÿ ìî-
íîòîííî âîçðàñòàåò îò 0 äî 1 . Ïîýòîìó ñóùåñòâóåò îá-
ðàòíàÿ ôóíêöèÿ. Ðåøàÿ ðàâåíñòâî îòíîñèòåëüíî x íàõîäèì:

                                       55