Численные методы: математический анализ и дифференциальные уравнения. Антоник В.Г. - 45 стр.

UptoLike

Составители: 

y
4
= y
3
hx
3
y
3
=
3
8
1
2
·
3
2
·
3
8
= 0.09375 .
y
i+1
= y
i
hx
i+1
y
i+1
, i = 0, 3 .
y
i+1
y
i+1
y
i+1
=
y
i
1 + hx
i+1
, i = 0, 3 .
y
1
=
y
0
1 + hx
1
=
1
1 +
1
2
·
1
2
=
4
5
= 0.8 ,
y
2
=
y
1
1 + hx
2
=
4
5
1 +
1
2
· 1
=
8
15
0.533 ,
y
3
=
y
2
1 + hx
3
=
8
15
1 +
1
2
·
3
2
=
32
105
0.305 ,
y
4
=
y
2
1 + hx
3
=
32
105
1 +
1
2
· 2
=
16
105
0.152 .
y(x) = exp
³
x
2
2
´
i x
i
y(x
i
) y
i
|r
i
| y
i
|r
i
|
                                3 1 3 3
          y4 = y3 − hx3 y3 =     − · · = 0.09375 .
                                8 2 2 8
   Òåïåðü âîñïîëüçóåìñÿ íåÿâíûì ìåòîäîì Ýéëåðà (3):
                  yi+1 = yi − hxi+1 yi+1 , i = 0, 3 .           (5)
Çàïèøåì ÿâíîå ñîîòíîøåíèå äëÿ yi+1 , ðåøèâ óðàâíåíèå (5)
îòíîñèòåëüíî íåèçâåñòíîãî yi+1
                          yi
               yi+1 =           , i = 0, 3 .
                      1 + hxi+1
Òîãäà
                   y0         1        4
          y1 =          =      1 1 =     = 0.8 ,
                1 + hx1    1+ 2 · 2    5
                               4
                      y1       5       8
           y2 =            =    1    =    ≈ 0.533 ,
                   1 + hx2   1+ 2 ·1   15
                                8
                     y2        15              32
          y3 =            =                =       ≈ 0.305 ,
                  1 + hx3   1 + 21 ·   3
                                       2
                                               105
                               32
                     y2       105      16
          y4 =            =     1   =     ≈ 0.152 .
                  1 + hx3   1+ 2 ·2   105

    Èíòåðåñíî ñðàâíèòü íàéäåííîå ïðèáëèæåííîå ðåøåíèå
                    ³ x2 ´
ñ òî÷íûì y(x) = exp        . Ðåçóëüòàòû ñðàâíåíèÿ ñâåäåì â
                      2
òàáëèöó

                              ßâíûé ÌÝ           Íåÿâíûé ÌÝ
      i     xi      y(xi )      yi   |ri |         yi   |ri |
      0      0        1         1     0            1     0
      1     0.5     0.883       1   0.117         0.8  0.083
      2      1      0.607     0.75 0.143         0.533 0.074
      3     1.5     0.325     0.375 0.05         0.305 0.02
      4      2      0.135     0.094 0.041        0.152 0.017

                                  45