ВУЗ:
Составители:
Рубрика:
{f
n
} ⊂
L
0
(X)
∀x: 0 ≤ f
n+1
(x) ≤ f
n
(x) lim
n→∞
f
n
(x) = 0,
lim
n→∞
I
0
(f
n
) = 0.
f
n
(x) I
0
(f
n
)
lim
n→∞
I
0
(f
n
)
M = sup{f
1
(x) | x ∈ X} , Z = {x | lim
n→∞
f
n
(x) 6= 0}.
mes(Z) = 0
g
n
,
∀(n , x ∈ X) : 0 ≤ g
n
(x) ≤ g
n+1
(x) ,
∀(x ∈ Z) : sup{g
n
(x) | 1 ≤ n < ∞} ≥ 1.
h
n
(x) = f
n
(x) − Mg
n
(x).
h
n
(x)
−∞
{h
n
(x)}
∀(n , x) : f
n
(x) ≤ M,
∀(x ∈ Z) : lim
n→∞
h
n
(x) ≤ lim
n→∞
f
n
(x) − M ≤ 0,
x ∈ C(Z) lim
n→∞
h
n
(x) ≤ −M ≤ 0
∀x : lim
n→∞
h
n
(x) ≤ 0 ,
Ëåììà 1.1.2. Åñëè ïîñëåäîâàòåëüíîñòü ýëåìåíòàðíûõ ôóíêöèé {f } ⊂ n
L0 (X) óäîâëåòâîðÿåò óñëîâèÿì:
∀ x : 0 ≤ fn+1 (x) ≤ fn (x) è ï.â. lim fn (x) = 0,
n→∞
òî
lim I0 (fn ) = 0.
n→∞
Äîêàçàòåëüñòâî. Òàê êàê ïîñëåäîâàòåëüíîñòü ýëåìåíòàðíûõ ôóíêöèé
fn (x) ìîíîòîííî íå âîçðàñòàåò, òî ÷èñëîâàÿ ïîñëåäîâàòåëüíîñòü I0 (fn )
ìîíîòîííî íå âîçðàñòàåò è ïðåäåë limn→∞ I0 (fn ) ñóùåñòâóåò. Íóæíî äî-
êàçàòü, ÷òî ýòîò ïðåäåë ðàâåí íóëþ.
Ïóñòü
M = sup{f1 (x) | x ∈ X} , Z = {x | lim fn (x) 6= 0}.
n→∞
Òàê êàê mes(Z) = 0, òî ñóùåñòâóåò òàêàÿ ïîñëåäîâàòåëüíîñòü ýëåìåí-
òàðíûõ ôóíêöèé gn , ÷òî
∀(n , x ∈ X) : 0 ≤ gn (x) ≤ gn+1
(x) ,
è
∀(x ∈ Z) : sup{gn (x) | 1 ≤ n < ∞} ≥ 1.
Ïîëîæèì
hn (x) = fn (x) − M gn (x).
Ïîñëåäîâàòåëüíîñòü hn (x) ñîñòîèò èç ýëåìåíòàðíûõ ôóíêöèé è ìîíîòîí-
íî íå âîçðàñòàåò, ïîýòîìó ó íåå â êàæäîé òî÷êå ñóùåñòâóåò ïðåäåë (íî â
íåêîòðûõ òî÷êàõ îí ìîæåò áûòü ðàâåí −∞).
Òàê êàê ïîñëåäîâàòåëüíîñòü {hn (x)} ìîíîòîííî íå âîçðàñòàåò è
∀(n , x) : fn (x) ≤ M,
òî
∀(x ∈ Z) : lim hn (x) ≤ lim fn (x) − M ≤ 0,
n→∞ n→∞
Åñëè x ∈ C(Z) òî limn→∞ hn (x) ≤ −M ≤ 0.
Ïîýòîìó
∀x : lim hn (x) ≤ 0 ,
n→∞
15
Страницы
- « первая
- ‹ предыдущая
- …
- 25
- 26
- 27
- 28
- 29
- …
- следующая ›
- последняя »
