Лекции по функциональному анализу для начинающих специалистов по математической физике. Арсеньев А.А. - 35 стр.

UptoLike

Составители: 

Рубрика: 

{f
n
(x)}
f(x) := lim
n→∞
f
n
(x).
n
{g
n,k
(x)}, k = 1, . . .
g
n,k
(x) % f
n
(x) , k I
0
(g
n,k
) I
+
(f
n
) < C,
n
h
k
(x) := max{g
n,k
(x) | n k}.
f(x)
h
k+1
(x) = max
1nk+1
g
n,k+1
(x) max
1nk+1
g
n,k
(x) max
1nk
g
n,k
(x) =
h
k
(x) h
k
(x) max
1nk
f
n
(x) = f
k
(x) f(x),
k : I
0
(h
k
) I
+
(f
k
) < C.
{h
k
(x)}
I
0
(h
k
) k
h(x) := lim
k→∞
h
k
(x),
L
+
(X)
h(x) L
+
(X)
L
+
(X)
I
+
(h) = lim
k→∞
I
0
(h
k
).
h(x) = lim
k→∞
h
k
(x) f(x).
(n k) : g
n,k
(x) h
k
(x) h(x) f(x).
   Äîêàçàòåëüñòâî. Òàê êàê ïîñëåäîâàòåëüíîñòü {fn (x)} ïî÷òè âñþäó ìî-
íîòîííî íå óáûâàåò, òî ïî÷òè âñþäó ñóùåñòâóåò (êîíå÷íûé èëè áåñêîíå÷-
íûé) ïðåäåë
                           f (x) := lim fn (x).                 (1.38)
                                      n→∞

Äëÿ êàæäîãî n ñóùåñòâóåò òàêàÿ ïîñëåäîâàòåëüíîñòü ýëåìåíòàðíûõ ôóíê-
öèé {gn,k (x)} , k = 1, . . ., ÷òî

       ï.â. gn,k (x) % fn (x) , k → ∞ è I0 (gn,k ) ≤ I+ (fn ) < C,   (1.39)

è êîíñòàíòà â (1.39) íå çàâèñèò îò n. Ïîëîæèì

                       hk (x) := max{gn,k (x) | n ≤ k}.              (1.40)

 ñèëó íåðàâåíñòâ (1.39) ïîñëåäîâàòåëüíîñòü ýëåìåíòàðíûõ ôóíêöèé (1.40)
ïî÷òè âñþäó ìîíîòîííî íå óáûâàåò è îãðàíè÷åíà ñâåðõó îïåðäåëåííîé
ðàâåíñòâîì (1.38)ôóíêöèåé f (x):

    ï.â. hk+1 (x) = max gn,k+1 (x) ≥ max gn,k (x) ≥ max gn,k (x) =
                   1≤n≤k+1                1≤n≤k+1           1≤n≤k

    hk (x) è ï.â. hk (x) ≤ max fn (x) = fk (x) ≤ f (x),              (1.41)
                          1≤n≤k

ïîýòîìó
                         ∀ k : I0 (hk ) ≤ I+ (fk ) < C.              (1.42)
Òàê êàê ïîñëåäîâàòåëüíîñòü ýëåìåíòàðíûõ ôóíêöèé {hk (x)} ìîíîòîííî
íå óáûâàåò è èíòåãðàëû I0 (hk ) îãðàíè÷åíû íå çàâèñÿùåé îò k êîíñòàíòîé,
òî ïî ëåììå 1.1.4 ïî÷òè âñþäó ñóùåñòâóåò ïðåäåë

                             h(x) := lim hk (x),                     (1.43)
                                      k→∞

è ïî îïðåäåëåíèþ ïðîñòðàíñòâà L+ (X) çàäàííàÿ ðàâåíñòâîì (1.43) ôóíê-
öèÿ h(x) ïðèíàäëåæèò ïðîñòðàíñòâó L+ (X), à ïî îïðåäåëåíèþ èíòåãðàëà
â ïðîñòðàíñòâå L+ (X) ñïðàâåäëèâî ðàâåíñòâî

                             I+ (h) = lim I0 (hk ).                  (1.44)
                                      k→∞

   Èç (1.40) ñëåäóåò, ÷òî

                       ï.â. h(x) = lim hk (x) ≤ f (x).               (1.45)
                                    k→∞

Ñëåäîâàòåëüíî,

              ∀(n ≤ k) : ï.â. gn,k (x) ≤ hk (x) ≤ h(x) ≤ f (x).      (1.46)

                                      23