ВУЗ:
Составители:
Рубрика:
A
R
1
3 −ctg(θ/2) 7→ E(−ctg(θ/2) , A) = E
un
(θ , Ca(A))
A
ψ
A
kAψk
2
=
Z
2π
0
(ctg(θ/2))
2
d
θ
< ψ , E
un
(θ , Ca(A))ψ > .
ψ ∈ Dom(A) , φ = (A − iid)ψ , Ca(A)φ = (A + iid)ψ.
ψ =
(φ −Ca(A)φ)
2i
, Aψ =
(φ + Ca(A)φ)
2
.
< ψ , E
un
(α , Ca(A))ψ >=
1
4
Z
α
0
|1 −exp(iθ)|
2
d
θ
< φ , E
un
(θ , Ca(A))φ >=
Z
α
0
(sin(θ/2))
2
d
θ
< φ , E
un
(θ , Ca(A))φ >,
kAψk
2
=
1
4
Z
α
0
|1 + exp(iθ)|
2
d
θ
< φ , E
un
(θ , Ca(A))φ >=
Z
2π
0
(cos(θ/2))
2
d
θ
< φ , E
un
(θ , Ca(A))φ > .
α
θ
1
, θ
2
∈ [ , 2π −] , > 0,
< φ , (E
un
(θ
2
, Ca(A)) −E
un
(θ
1
, Ca(A))φ >=
(sin(θ/2))
−2
(1 + o(1)) < ψ , (E
un
(θ
2
, Ca(A)) −E
un
(θ
1
, Ca(A))ψ >,
Èç òåîðåìû 4.9.1 ñëåäóåò ÷òî äëÿ îãðàíè÷åííûõ îïåðàòîðîâ A ôóíê-
öèÿ
R1 3 − ctg(θ/2) 7→ E(− ctg(θ/2) , A) = Eun (θ , Ca(A)) (4.237)
ñîâïàäàåò ñ ââåäåííîé â îïðåäåëåíèè 4.5.3 ñïåêòðàëüíîé ôóíêöèåé, äëÿ
íåîãðàíè÷åííûõ îïåðàòîðîâ A ìû îïðåäåëèì ñïåêòðàëüíóþ ôóíêöèþ
ðàâåíñòâîì (4.237).
Òåîðåìà 4.9.2. Âåêòîð ψ ïðèíàäëåæèò îáëàñòè îïðåäåëåíÿ îïåðàòîðà
A â òîì è òîëüêî òîì ñëó÷àå, åñëè ñõîäèòñÿ ïîíèìàåìûé êàê íåñîá-
ñòâåííûé èíòåãðàë Ðèìàíà-Ñòèëüòüåñà â ïðàâîé ÷àñòè (4.238) è â
ýòîì ñëó÷àå
Z 2π
kAψk = 2
(ctg(θ/2))2 dθ < ψ , Eun (θ , Ca(A))ψ > . (4.238)
0
Äîêàçàòåëüñòâî. Ïóñòü
ψ ∈ Dom(A) , φ = (A − iid)ψ , Ca(A)φ = (A + iid)ψ.
Òîãäà
(φ − Ca(A)φ) (φ + Ca(A)φ)
ψ= , Aψ = .
2i 2
Ñëåäîâàòåëüíî,
< ψ , Eun (α , Ca(A))ψ >=
1 α
Z
|1 − exp(iθ)|2 dθ < φ , Eun (θ , Ca(A))φ >=
4 0
Z α
(sin(θ/2))2 dθ < φ , Eun (θ , Ca(A))φ >, (4.239)
0
1 α
Z
2
kAψk = |1 + exp(iθ)|2 dθ < φ , Eun (θ , Ca(A))φ >=
4 0
Z 2π
(cos(θ/2))2 dθ < φ , Eun (θ , Ca(A))φ > . (4.240)
0
Çàìåòèì, ÷òî ïðàâàÿ ÷àñòü (4.239), âîîáùå ãîâîðÿ, íå äèôôåðåíöèðóåìà
ïî α. Îäíàêî åñëè
θ1 , θ2 ∈ [ , 2π − ] , > 0,
òî â ñèëó ðàâåíñòâà (4.239):
< φ , (Eun (θ2 , Ca(A)) − Eun (θ1 , Ca(A))φ >=
(sin(θ/2))−2 (1 + o(1)) < ψ , (Eun (θ2 , Ca(A)) − Eun (θ1 , Ca(A))ψ >,
362
Страницы
- « первая
- ‹ предыдущая
- …
- 372
- 373
- 374
- 375
- 376
- …
- следующая ›
- последняя »
