Лекции по функциональному анализу для начинающих специалистов по математической физике. Арсеньев А.А. - 386 стр.

UptoLike

Составители: 

Рубрика: 

µ(φ
ac
| m) =
Z
I(m | λ)d
λ
< φ
ac
, E(λ , A)φ
ac
>=
Z
I(m | λ)I(C(m
0
))d
λ
< φ , E(λ , A)φ >= µ(φ | m
\
C(m
0
)) =
µ
ac
(φ | m
\
C(m
0
)) + µ
s
(φ | m
\
C(m
0
)) = µ
ac
(φ | m
\
C(m
0
)),
µ
s
(φ | m
\
C(m
0
)) = µ
s
(φ | m
\
C(m
0
)
\
m
0
) = 0.
µ(φ
s
| m) = µ(φ | m
\
m
0
),
µ(φ
s
| ·)
ψ = ψ
ac
+ ψ
s
ψ H
| < φ
ac
, ψ
s
> |
2
= |
Z
I(C(m
0
(φ)))I(m
0
(ψ))d
λ
< φ , E(λ , A)ψ > |
2
|
Z
I(C(m
0
(φ)))I(m
0
(ψ))d
λ
< φ , E(λ , A)φ > |kψk
2
=
µ
ac
(φ | m
0
(ψ))|kψk
2
= 0.
µ(f(A)φ
ac
| m) sup{|f(λ)|
2
}µ(φ
ac
| m),
(µ(φ
ac
| m) = 0) (µ(f(A)φ
ac
| m)) = 0),
f(A)H
ac
H
ac
.
µ(f(A)φ
s
| m) = µ(f(A)φ
s
| m
\
m
0
),
    Èìååì:
                      Z
     µ(φac | m) = I(m | λ)dλ < φac , E(λ , A)φac >=
     Z                                                 \
         I(m | λ)I(C(m0 ))dλ < φ , E(λ , A)φ >= µ(φ | m C(m0 )) =
                \                    \                   \
     µac (φ | m C(m0 )) + µs (φ | m C(m0 )) = µac (φ | m C(m0 )),

òàê êàê
                 \                         \            \
     µs (φ | m       C(m0 )) = µs (φ | m       C(m0 )       m0 ) = 0.

Àíàëãè÷íî,èç (5.10) ñëåäóåò, ÷òî
                                                   \
                            µ(φs | m) = µ(φ | m         m0 ),

ïîýòîìó ìåðà µ(φs | ·) ñèíãóëÿðíà. Ïóñòü

                                    ψ = ψac + ψs

-ðàçëîæåíèå ïðîèçâîëüíîãî ýëåìåíòà ψ ∈ H .
   Èìååì:
                       Z
   | < φac , ψs > | = | I(C(m0 (φ)))I(m0 (ψ))dλ < φ , E(λ , A)ψ > |2 ≤
                   2

     Z
   | I(C(m0 (φ)))I(m0 (ψ))dλ < φ , E(λ , A)φ > |kψk2 =

    µac (φ | m0 (ψ))|kψk2 = 0.

Èòàê, ìû äîêàçàëè ðàâåíñòâî (5.5) Èç (5.9) ñëåäóåò, ÷òî

                     µ(f (A)φac | m) ≤ sup{|f (λ)|2 }µ(φac | m),

ïîýòîìó

                     (µ(φac | m) = 0) ⇒ (µ(f (A)φac | m)) = 0),

è

                     f (A)Hac ⊂ Hac .

Èç (5.10) ñëåäóåò, ÷òî
                                                            \
                       µ(f (A)φs | m) = µ(f (A)φs | m           m0 ),


                                           374