ВУЗ:
Составители:
Рубрика:
µ(φ
ac
| m) =
Z
I(m | λ)d
λ
< φ
ac
, E(λ , A)φ
ac
>=
Z
I(m | λ)I(C(m
0
))d
λ
< φ , E(λ , A)φ >= µ(φ | m
\
C(m
0
)) =
µ
ac
(φ | m
\
C(m
0
)) + µ
s
(φ | m
\
C(m
0
)) = µ
ac
(φ | m
\
C(m
0
)),
µ
s
(φ | m
\
C(m
0
)) = µ
s
(φ | m
\
C(m
0
)
\
m
0
) = 0.
µ(φ
s
| m) = µ(φ | m
\
m
0
),
µ(φ
s
| ·)
ψ = ψ
ac
+ ψ
s
ψ ∈ H
| < φ
ac
, ψ
s
> |
2
= |
Z
I(C(m
0
(φ)))I(m
0
(ψ))d
λ
< φ , E(λ , A)ψ > |
2
≤
|
Z
I(C(m
0
(φ)))I(m
0
(ψ))d
λ
< φ , E(λ , A)φ > |kψk
2
=
µ
ac
(φ | m
0
(ψ))|kψk
2
= 0.
µ(f(A)φ
ac
| m) ≤ sup{|f(λ)|
2
}µ(φ
ac
| m),
(µ(φ
ac
| m) = 0) ⇒ (µ(f(A)φ
ac
| m)) = 0),
f(A)H
ac
⊂ H
ac
.
µ(f(A)φ
s
| m) = µ(f(A)φ
s
| m
\
m
0
),
Èìååì:
Z
µ(φac | m) = I(m | λ)dλ < φac , E(λ , A)φac >=
Z \
I(m | λ)I(C(m0 ))dλ < φ , E(λ , A)φ >= µ(φ | m C(m0 )) =
\ \ \
µac (φ | m C(m0 )) + µs (φ | m C(m0 )) = µac (φ | m C(m0 )),
òàê êàê
\ \ \
µs (φ | m C(m0 )) = µs (φ | m C(m0 ) m0 ) = 0.
Àíàëãè÷íî,èç (5.10) ñëåäóåò, ÷òî
\
µ(φs | m) = µ(φ | m m0 ),
ïîýòîìó ìåðà µ(φs | ·) ñèíãóëÿðíà. Ïóñòü
ψ = ψac + ψs
-ðàçëîæåíèå ïðîèçâîëüíîãî ýëåìåíòà ψ ∈ H .
Èìååì:
Z
| < φac , ψs > | = | I(C(m0 (φ)))I(m0 (ψ))dλ < φ , E(λ , A)ψ > |2 ≤
2
Z
| I(C(m0 (φ)))I(m0 (ψ))dλ < φ , E(λ , A)φ > |kψk2 =
µac (φ | m0 (ψ))|kψk2 = 0.
Èòàê, ìû äîêàçàëè ðàâåíñòâî (5.5) Èç (5.9) ñëåäóåò, ÷òî
µ(f (A)φac | m) ≤ sup{|f (λ)|2 }µ(φac | m),
ïîýòîìó
(µ(φac | m) = 0) ⇒ (µ(f (A)φac | m)) = 0),
è
f (A)Hac ⊂ Hac .
Èç (5.10) ñëåäóåò, ÷òî
\
µ(f (A)φs | m) = µ(f (A)φs | m m0 ),
374
Страницы
- « первая
- ‹ предыдущая
- …
- 384
- 385
- 386
- 387
- 388
- …
- следующая ›
- последняя »
