ВУЗ:
Составители:
Рубрика:
s ≥ 0 H
s
(R
d
)
S(R
d
)
b
f(ξ) f
L
2
(R
d
, dx) ⊂ H
s
(R
d
) , s ≥ 0.
s < 0 H
s
(R
d
)
S(R
d
)
∀(f ∈ S(R
d
)) : kf |
e
H
n
(R
d
)k
2
=
Z
X
0≤|m|≤n
|D
m
x
f(x)|
2
dx.
kf |
e
H
n
(R
d
)k
2
= (2π)
−d
Z
X
0≤|m|≤n
|ξ
m
|
2
b
f(ξ)|
2
dξ.
∃(C
1
, C
2
) : C
1
(1 + |ξ|
2
)
n
≤
X
0≤|m|≤n
|ξ
m
|
2
≤ C
2
(1 + |ξ|
2
)
n
,
k |
e
H
n
(R
d
)k k | H
n
(R
d
)k
k |
e
H
n
(R
d
)k ∼ k | H
n
(R
d
)k.
s = n + α , 0 < α < 1
∀(φ ∈ S(R
d
)) : kφ |
e
H
n , α
(R
d
)k
2
=
X
0≤|m|≤n
Z
|D
m
x
φ(x)|
2
dx+
X
|m|=n
ZZ
|x − y|
−(d+2α)
|D
m
x
φ(x) − D
m
y
φ(y)|
2
dxdy. , 0 < α < 1 , n = 0 , 1 . . .
S(R
d
) k | H
n+α
(R
d
)k
k |
e
H
n , α
(R
d
)k
k | H
n+α
(R
d
)k ∼ k |
e
H
n , α
(R
d
)k.
Òåîðåìà äîêàçàíà.
Èç òåîðåìû (6.4.1) ñëåäóåò, ÷òî ïðè s ≥ 0 ïðîñòðàíñòâî H s (Rd ) ìîæ-
íî îòîæäåñòâèòü ñ ïîïîëíåíèåì ïðîñòðàíñòâà S(Rd ) ïî ìåòðèêå (6.109),
ãäå fb(ξ) -ïðåîáðàçîâàíèå Ôóðüå-Ïëàíøåðåëÿ ôóíêöèè f , è ñïðàâåäëèâî
âêëþ÷åíèå
L2 (Rd , dx) ⊂ H s (Rd ) , s ≥ 0.
Ïðè s < 0 ïðîñòðàíñòâî H s (Rd ) åñòü ïðîñòðàíñòâî ðàñïðåäåëåíèé, êîòî-
ðûå äåéñòâóþò ïî ïðàâèëó (6.111).
Íà ïðîñòðàíñòâå S(Rd ) îïðåäåëèì íîðìó
Z X
∀(f ∈ S(Rd )) : kf | H
e n (Rd )k2 = |Dxm f (x)|2 dx.
0≤|m|≤n
Èç ðàâåíñòâà Ïàðñåâàëÿ ñëåäóåò, ÷òî
Z X
e n (Rd )k2 = (2π)−d
kf | H |ξ m |2 fb(ξ)|2 dξ. (6.113)
0≤|m|≤n
Òàê êàê
X
∃(C1 , C2 ) : C1 (1 + |ξ|2 )n ≤ |ξ m |2 ≤ C2 (1 + |ξ|2 )n ,
0≤|m|≤n
òî íîðìû k e n (Rd )k è k
|H | H n (Rd )k ýêâèâàëåíòíû:
k e n (Rd )k ∼ k
|H | H n (Rd )k.
 ñëó÷àå s = n + α , 0 < α < 1 ïîëîæèì
def
X Z
d n , α d 2
∀(φ ∈ S(R )) : kφ | H
e (R )k = |Dxm φ(x)|2 dx+
0≤|m|≤n
X ZZ
|x − y|−(d+2α) |Dxm φ(x) − Dym φ(y)|2 dxdy. , 0 < α < 1 , n = 0 , 1 . . .
|m|=n
(6.114)
Òåîðåìà 6.4.2. Íà ïðîñòðàíñòâå S(R ) íîðìà k d
| H n+α (Rd )k ýêâèâà-
ëåíòíà íîðìå k e n , α (Rd )k
|H :
k | H n+α (Rd )k ∼ k e n , α (Rd )k.
|H (6.115)
449
Страницы
- « первая
- ‹ предыдущая
- …
- 459
- 460
- 461
- 462
- 463
- …
- следующая ›
- последняя »
