ВУЗ:
Составители:
Рубрика:
Z
exp(iη · x)h(ξ , η)dη ≡ 0,
h(ξ , η) ≡ 0.
z
i , j
(ξ , η) z
i , j
(ξ , η)
S(R
d
⊕R
d
)
a(q , p) ∈ S(R
d
⊕ R
d
) T
w
(a)
L
2
(R
d
)
∀(a ∈ S(R
d
⊕ R
d
)) : T
w
(a) = (2π)
−d
Z
F
σ
(a)(ξ ⊕ η)W (ξ , η)dξdη,
F
σ
(a)(ξ ⊕ η) = (2π)
−d
Z
exp(−iσ(ξ ⊕ η , q ⊕ p))a(q ⊕ p) dqdp.
L(L
2
(R
d
) 7→ L
2
(R
d
))
F
σ
(a)(ξ ⊕ η) ∈ S(R
d
⊕ R
d
) , kW (ξ , η) | L(L
2
(R
d
) 7→ L
2
(R
d
))k ≡ 1,
S(R
d
⊕R
d
)
1. T
w
(a)
∗
= T
w
(a
∗
).
2. ∀(a ∈ S(R
d
⊕ R
d
)) : T
w
(a) ∈ HS , kT
w
(a) | HSk
2
= (2π)
−d
ka | L
2
(R
d
⊕ R
d
)k
2
.
3. ∀(ψ ∈ S(R
d
)) : T
w
(a)ψ(x) = (2π)
−d
Z
exp(ip · (x − ξ))a
x + ξ
2
, p
ψ(ξ)dpdξ.
T
w
(a)
∗
=
(2π)
−d
Z
F
σ
(a)(ξ , η)
∗
W (ξ , η)
∗
dξdη = (2π)
−d
Z
F
σ
(a)(ξ , η)
∗
W (−ξ , −η)dξdη =
(2π)
−d
Z
F
σ
(a)(−ξ , −η)
∗
W (ξ , η)dξdη = (2π)
−d
Z
F
σ
(a
∗
)(ξ , η)W (ξ , η)dξdη.
ñëåäóåò ðàâåíñòâî Z
exp(iη · x)h(ξ , η)dη ≡ 0,
è
h(ξ , η) ≡ 0.
Ïîëíîòà ñèñòåìû zi , j (ξ , η) äîêàçàíà. Îðòîíîðìèðîâàííîñòü ñèñòåìû zi , j (ξ , η)
ñëåäóåò èç ïðåäûäóùåé ëåììû.
Îïðåäåëåíèå A.1.1. Íà ôóíêöèÿõ èç ïðîñòðàíñòâà Øâàðöà S(R ⊕R ) d d
ïðåîáðàçîâàíèå Âåéëÿ îïðåäåëåíî êàê îòîáðàæåíèå, êîòîðîå ôóíêöèè
a(q , p) ∈ S(Rd ⊕ Rd ) ñòàâèò â ñîîòâåòñòâèå îïåðàòîð Tw (a) íà ïðîñòðàí-
ñòâå L2 (Rd ):
Z
d d
∀(a ∈ S(R ⊕ R )) : Tw (a) = (2π) −d
Fσ (a)(ξ ⊕ η)W (ξ , η)dξdη, (A.16)
ãäå
Z
−d
Fσ (a)(ξ ⊕ η) = (2π) exp(−iσ(ξ ⊕ η , q ⊕ p))a(q ⊕ p) dqdp.
(A.17)
Èíòåãðàë â ôîðìóëå (A.16) ïîíèìàåòñÿ êàê èíòåãðàë Áîõíåðà â áà-
íàõîâîì ïðîñòðàíñòâå L(L2 (Rd ) 7→ L2 (Rd )). Â ôîðìóëå (A.16)
Fσ (a)(ξ ⊕ η) ∈ S(Rd ⊕ Rd ) , kW (ξ , η) | L(L2 (Rd ) 7→ L2 (Rd ))k ≡ 1,
ïîýòîìó ñõîäèìîñòü èíòåãðàëà ñîìíåíèé íå âûçûâàåò.
Òåîðåìà A.1.1. Íà ôóíêöèÿõ èç ïðîñòðàíñòâà Øâàðöà S(R ⊕R ) ïðå- d d
îáðàçîâàíèå Âåéëÿ óäîâëåòâîðÿåò óñëîâèÿì:
1. Tw (a)∗ = Tw (a∗ ). (A.18)
2. ∀(a ∈ S(Rd ⊕ Rd )) : Tw (a) ∈ HS , kTw (a) | HSk2 = (2π)−d ka | L2 (Rd ⊕ Rd )k2 .
(A.19)
Z
x+ξ
3. ∀(ψ ∈ S(Rd )) : Tw (a)ψ(x) = (2π)−d exp(ip · (x − ξ))a , p ψ(ξ)dpdξ.
2
(A.20)
Äîêàçàòåëüñòâî. Èìååì:
Tw (a)∗ =
Z Z
−d ∗ ∗ −d
(2π) Fσ (a)(ξ , η) W (ξ , η) dξdη = (2π) Fσ (a)(ξ , η)∗ W (−ξ , −η)dξdη =
Z Z
−d ∗ −d
(2π) Fσ (a)(−ξ , −η) W (ξ , η)dξdη = (2π) Fσ (a∗ )(ξ , η)W (ξ , η)dξdη.
469
Страницы
- « первая
- ‹ предыдущая
- …
- 479
- 480
- 481
- 482
- 483
- …
- следующая ›
- последняя »
