Классические ортогональные полиномы. Балакин А.Б. - 10 стр.

UptoLike

Составители: 

Рубрика: 

n m
a b
(λ
m
λ
n
)
Z
b
a
dx W (x) Y
n
(x) Y
m
(x) =
=
Z
b
a
dx
(
h
W (x)X(x)Y
0
n
(x)
i
0
Y
m
(x)
h
W (x)X(x)Y
0
m
(x)
i
0
Y
n
(x)
)
=
=
Z
b
a
dx
n
W (x)X(x)
h
Y
0
n
(x)Y
m
(x) Y
0
m
(x)Y
n
(x)
io
0
=
=
n
W (x)X(x)
h
Y
0
n
(x)Y
m
(x) Y
0
m
(x)Y
n
(x)
io
|
b
a
= 0 .
[a, b]
m 6= n λ
m
6= λ
n
Z
b
a
dx W (x)Y
m
(x)Y
n
(x) = δ
mn
N
2
n
,
N
n
Y
n
(x) δ
mn
Y
n
(x)
W (x) [a, b]
f(x)
f(x) =
X
k=0
c
k
Y
k
(x) ,
 ðàâåíñòâå (11) ïîìåíÿåì ìåñòàìè èíäåêñû n è m, çàòåì èç ïîëó-
÷åííîãî ðàâåíñòâà âû÷òåì (11) è ïðîèíòåãðèðóåì ïîëó÷åííîå óðàâ-
íåíèå â èíòåðâàëå îò a äî b. Ñðàâíèâàÿ ëåâóþ è ïðàâóþ ÷àñòü ïî-
ëó÷åííîãî ñîîòíîøåíèÿ, ëåãêî óñòàíîâèòü ñëåäóþùåå ðàâåíñòâî:
                                          Z b
                         (λm − λn )             dx W (x) Yn (x) Ym (x) =
                                           a
     Z b        (                                                                               )
                    h                 0         i0                h               0   i0
 =         dx       W (x)X(x)Yn (x) Ym (x) − W (x)X(x)Ym (x) Yn (x) =
      a
                Z b       n                      h                                    io0
                                                     0                       0
            =           dx W (x)X(x) Yn (x)Ym (x) − Ym (x)Yn (x)                            =
                    a

                    n                 h    0                          0          io
            = W (x)X(x) Yn (x)Ym (x) − Ym (x)Yn (x) |ba = 0 .                                       (12)
Èíòåãðèðîâàíèå â (12) ïðèâåëî ê íóëåâîìó ðåçóëüòàòó áëàãîäàðÿ
óñëîâèÿì (9), çàäàííûì íà ãðàíèöàõ èíòåðâàëà [a, b]. Ïîñêîëüêó ïðè
m 6= n êîíñòàíòû ðàçëè÷íû, ò.å., λm 6= λn , ïîëó÷èì ñîîòíîøåíèå
                           Z b
                                  dx W (x)Ym (x)Yn (x) = δmn Nn2 ,                                  (13)
                              a

ãäå Nn - íîðìà ôóíêöèè Yn (x), ââåäåííàÿ ðàíåå ôîðìóëîé (4), à δmn
- ñèìâîë Êðîíåêåðà. Ñîîòíîøåíèå (13) ïðåêðàñíî èçâåñòíî â òåîðèè
ôóíêöèé [1-12]. Îíî îïðåäåëÿåò ïîñëåäîâàòåëüíîñòü ôóíêöèé Yn (x),
îðòîãîíàëüíûõ ñ âåñîì W (x) íà èíòåðâàëå [a, b]. Òàêèì îáðàçîì,
ñâîéñòâî îðòîãîíàëüíîñòè äëÿ ïîëèíîìèàëüíûõ ðåøåíèé óðàâíåíèÿ
(6) ÿâëÿåòñÿ ñëåäñòâèåì ãðàíè÷íûõ óñëîâèé (9), à íå äîïîëíèòåëü-
íûì òðåáîâàíèåì. Íå ïåðåãðóæàÿ êðàòêîå ââåäåíèå â òåîðèþ îðòî-
ãîíàëüíûõ ïîëèíîìîâ èçëèøíåé èíôîðìàöèåé, íàïîìíèì ëèøü, ÷òî
ïðè âûïîëíåíèè íåêîòîðûõ óñëîâèé (ñîîòâåòñòâóþùèå îïðåäåëåíèÿ,
òåîðåìû è ïîäðîáíîñòè äîêàçàòåëüñòâ ìîæíî íàéòè â êíèãàõ [3,11])
ïðîèçâîëüíóþ êâàäðàòè÷íî èíòåãðèðóåìóþ ôóíêöèþ f (x) ìîæíî
ïðåäñòàâèòü ñõîäÿùèìñÿ ðÿäîì
                                                         ∞
                                                         X
                                          f (x) =              ck Yk (x) ,                          (14)
                                                         k=0

                                                          10