Классические ортогональные полиномы. Балакин А.Б. - 13 стр.

UptoLike

Составители: 

Рубрика: 

{Z
n
(x)}
Z
n
(x)
n
n
n = 0
Z
0
=
1
K
0
n = 1
Z
1
=
1
K
1
W (x)
d
dx
[W (x)X(x)] =
1
K
1
W
0
(x)
W (x)
X(x) + X
0
(x)
,
n m
Z
m
(x) =
1
K
m
W (x)
d
m
dx
m
[W (x)X
m
(x)]
m Z
m+1
m + 1
d
dx
h
W (x)X
m+1
(x)
i
= W (x)X
m
(x)R
1
(x) ,
d
2
dx
2
h
W (x)X
m+1
(x)
i
= W (x)X
m1
(x)R
2
(x) ,
...................................................................
d
k
dx
k
h
W (x)X
m+1
(x)
i
= W (x)X
mk+1
(x)R
k
(x) ,
ÒÅÎÐÅÌÀ 2
Ïîñëåäîâàòåëüíîñòü ôóíêöèé {Zn (x)}, çàäàííûõ ôîðìóëîé Ðîäðè-
ãà (20), ïðåäñòàâëÿåò ñîáîé ïîñëåäîâàòåëüíîñòü îðòîãîíàëüíûõ
ïîëèíîìîâ, íîìåðà êîòîðûõ ñîâïàäàþò ñî ñòåïåíüþ.

Äîêàçàòåëüñòâî
Äîêàçàòåëüñòâî ðàçäåëèì íà äâà ýòàïà. Ñíà÷àëà ïîêàæåì, ÷òî Zn (x)
- ýòî äåéñòâèòåëüíî ïîëèíîì, ñòåïåíü êîòîðîãî íå ïðåâûøàåò n. Çà-
òåì äîêàæåì, ÷òî ñòåïåíü ýòîãî ïîëèíîìà â òî÷íîñòè ðàâíà n, à
ðàññìàòðèâàåìûå ïîëèíîìû îðòîãîíàëüíû. Âîñïîëüçóåìñÿ ìåòîäîì
ìàòåìàòè÷åñêîé èíäóêöèè. Ïðè n = 0 ôîðìóëà Ðîäðèãà äàåò ïîëè-
                                   1
íîì íóëåâîé ñòåïåíè Z0 =           K0 .   Ïðè n = 1 ïîëó÷àåì ôîðìóëó
                                                         0                         
          1      d               1  W (x)         0
  Z1 =             [W (x)X(x)] =           X(x) + X (x) ,                              (21)
       K1 W (x) dx               K1 W (x)
êîòîðàÿ â ñèëó óðàâíåíèÿ Ïèðñîíà (19) äàåò íåïðåìåííî ïîëèíîì
ïåðâîé ñòåïåíè. Ïîêàçàâ, ÷òî ãèïîòåçà ñïðàâåäëèâà äëÿ ïåðâûõ äâóõ
çíà÷åíèé n, ïðåäïîëîæèì, ÷òî îíà âåðíà äëÿ íîìåðà m, òî åñòü,
âûðàæåíèå
                           1      dm
               Zm (x) =             m
                                      [W (x)X m (x)]       (22)
                        Km W (x) dx
åñòü ïîëèíîì ñòåïåíè m. Äîêàæåì, ÷òî Zm+1 ÿâëÿåòñÿ ïîëèíîìîì
ñòåïåíè m + 1. Äåéñòâèòåëüíî, âûïîëíÿÿ ïîñëåäîâàòåëüíîå äèôôå-
ðåíöèðîâàíèå ñ ó÷åòîì ôîðìóëû (19), íåïîñðåäñòâåííî ïîëó÷àåì
                d h              i
                   W (x)X m+1 (x) = W (x)X m (x)R1 (x) ,
               dx
              d2 h               m+1
                                           i
                 2
                     W   (x)X         (x)    = W (x)X m−1 (x)R2 (x) ,
             dx
              ...................................................................
             dk h              m+1
                                         i
               k
                   W (x)X            (x) = W (x)X m−k+1 (x)Rk (x) ,                     (23)
            dx

                                            13