Классические ортогональные полиномы. Балакин А.Б. - 47 стр.

UptoLike

Составители: 

Рубрика: 

P
(λ)
n
(x) = (1)
n
1
2
n
n!
(1 x
2
)
λ+
1
2
d
n
dx
n
·
(1 x
2
)
n+λ
1
2
¸
.
P
(λ)
n
(x) = (1)
n
P
(λ)
n
(x) .
P
(λ)
0
(x) = 1 , P
(λ)
1
(x) =
x
2
(2λ + 1) ,
P
(λ)
2
(x) =
2λ + 3
8
h
2x
2
(λ + 1) 1
i
.
p
(n,n)
=
1
2
n
C
n
2n+2λ1
, p
(n,n1)
= 0 .
N
2
n
(λ) = 2
2λ1
Γ
2
(λ + n +
1
2
)
n!(λ + n)Γ(2λ + n)
.
P
(λ)
n
(x) =
(1)
n
2πi
2
n
(1 x
2
)
λ+
1
2
Z
C
dξ
(1 ξ
2
)
λ+n
1
2
(ξ x)
n+1
.
A
n
=
(n + λ)(2n + 2λ + 1)
(n + 1)(n + 2λ)
, B
n
= 0 ,
C
n
=
(n + λ
1
2
)
2
(2n + 2λ + 1)
(n + 1)(n + 2λ)(2n + 2λ 1)
.
(n + 1)(n + 2λ) P
(λ)
n+1
(x)(n + λ)(2n + 2λ + 1) x P
(λ)
n
(x)+
+
1
4
(2n + 2λ 1)(2n + 2λ + 1) P
(λ)
n1
(x) = 0 .
Ôîðìóëà Ðîäðèãà
                                                   n ·                 ¸
                             1           2 −λ+ 12 d          2 n+λ− 21
    Pn(λ) (x) = (−1)n             (1 − x  )           (1 − x  )          .   (170)
                            2n n!                dxn
Ñâîéñòâà ÷åòíîñòè

                             Pn(λ) (−x) = (−1)n Pn(λ) (x) .                  (171)

Ïåðâûå òðè ïîëèíîìà Ãåãåíáàóýðà
                      (λ)                 (λ)        x
                    P0 (x) = 1 ,        P1 (x) =       (2λ + 1) ,
                                                     2
                       2λ + 3 h 2
                       (λ)                   i
                     P2 (x) =  2x (λ + 1) − 1 .                              (172)
                         8
Ïîëèíîìèàëüíûå êîýôôèöèåíòû
                                 1 n
                     p(n,n) =      C        ,     p(n,n−1) = 0 .             (173)
                                 2n 2n+2λ−1
Íîðìèðîâî÷íûå ìíîæèòåëè
                                           Γ2 (λ + n + 12 )
                     Nn2 (λ) = 22λ−1                        .                (174)
                                        n!(λ + n)Γ(2λ + n)
Èíòåãðàëüíîå ïðåäñòàâëåíèå
                                                                      1
                   (−1)n −n     2 −λ+ 12
                                         Z     (1 − ξ 2 )λ+n− 2
     Pn(λ) (x)   =      2 (1 − x )          dξ                  .            (175)
                    2πi                   C      (ξ − x)n+1
Êîýôôèöèåíòû ðåêóððåíòíîñòè
                             (n + λ)(2n + 2λ + 1)
                   An =                           ,      Bn = 0 ,
                                (n + 1)(n + 2λ)
                     (n + λ − 12 )2 (2n + 2λ + 1)
              Cn =                                .                          (176)
                   (n + 1)(n + 2λ)(2n + 2λ − 1)
Ðåêóððåíòíûå ñîîòíîøåíèÿ
                               (λ)
     (n + 1)(n + 2λ) Pn+1 (x)−(n + λ)(2n + 2λ + 1) x Pn(λ) (x)+
              1                            (λ)
             + (2n + 2λ − 1)(2n + 2λ + 1) Pn−1 (x) = 0 .                     (177)
              4
                                           47