Классические ортогональные полиномы. Балакин А.Б. - 48 стр.

UptoLike

Составители: 

Рубрика: 

β
n
=
1
2
(2n + 2λ 1) .
(1 x
2
)
d
dx
P
(λ)
n
(x) = n xP
(λ)
n
(x) +
1
2
(2n + 2λ 1) P
(λ)
n1
(x) .
W(x, t) = 2
2λ1
{[1 t + R(x, t)][1 + t + R (x, t)]}
λ+
1
2
R
1
(x, t) .
α = β = 0 , λ =
1
2
.
a = 1 , b = 1 , X(x) = 1 x
2
, W (x) = 1 ,
K
n
= (1)
n
2
n
n! , λ
n
= n(n + 1) .
(1 x
2
)
d
2
dx
2
P
n
(x) 2x
d
dx
P
n
(x) + n(n + 1) P
n
(x) = 0 .
P
n
(x) = (1)
n
1
2
n
n!
d
n
dx
n
h
(1 x
2
)
n
i
.
P
n
(x) =
Ã
1
2
!
n
[n/2]
X
m=0
C
m
n
C
2n2m
n
(1)
m
x
n2m
.
P
n
(x) = (1)
n
P
n
(x) .
Ôîðìóëà äèôôåðåíöèðîâàíèÿ
                            1
                       βn = (2n + 2λ − 1) .                     (178)
                            2
            d (λ)                     1               (λ)
 (1 − x2 )    Pn (x) = −n xPn(λ) (x) + (2n + 2λ − 1) Pn−1 (x) . (179)
           dx                         2
Ïðîèçâîäÿùàÿ ôóíêöèÿ
                                                                1
 W(x, t) = 22λ−1 {[1 − t + R(x, t)][1 + t + R(x, t)]}−λ+ 2 R−1 (x, t) . (180)

2.5.2. Ïîëèíîìû Ëåæàíäðà (Legendre A.M.)
Ïîëèíîìû Ëåæàíäðà íå ñîäåðæàò ñâîáîäíûõ ïàðàìåòðîâ è ïîëó÷à-
þòñÿ èç ïîëèíîìîâ ßêîáè èëè èç ïîëèíîìîâ Ãåãåíáàóýðà, ñîîòâåò-
ñòâåííî, ïðè
                                                     1
                        α = β = 0,             λ =     .                 (181)
                                                     2
Còàíäàðòèçàöèÿ

           a = −1 ,    b = 1,     X(x) = 1 − x2 ,          W (x) = 1 ,

                   Kn = (−1)n 2n n! ,         λn = n(n + 1) .            (182)

Äèôôåðåíöèàëüíîå óðàâíåíèå

            2 d2            d
     (1 − x ) 2 Pn (x) − 2x Pn (x) + n(n + 1) Pn (x) = 0 .               (183)
             dx            dx
Ôîðìóëà Ðîäðèãà
                                 1 dn h
                                   n            2 n
                                                    i
                  Pn (x) = (−1) n        (1 − x  )    .                  (184)
                                2 n! dxn
Ïðåäñòàâëåíèå â âèäå êîíå÷íîé ñóììû
                           Ã !n [n/2]
                            1 X
                Pn (x) =                Cnm Cn2n−2m (−1)m xn−2m .        (185)
                            2    m=0

Ñâîéñòâà ÷åòíîñòè

                           Pn (−x) = (−1)n Pn (x) .                      (186)

                                         48