ВУЗ:
Составители:
Рубрика:
J
n
J
−n
ν
2
=
n
2
Y
ν
(x)
Y
ν
(x) ≡
cos πνJ
ν
(x) − J
−ν
(x)
sin πν
.
Y
ν
(x)
J
ν
(x) Y
ν
(x)
W [J
ν
(x), Y
ν
(x)] = −
1
sin πν
W [J
ν
(x), J
−ν
(x)] =
2
πx
,
ν
y(x) = C
1
J
ν
(x) + C
2
Y
ν
(x) .
Y
n
(x)
Y
n
= lim
ν→n
Y
ν
cos πν → (−1)
n
sin πν → 0
0
0
Y
n
(x) =
1
π
lim
ν→n
"
−π tan πν J
ν
(x) +
∂
∂ν
J
ν
(x) −
1
cos πν
∂
∂ν
J
−ν
(x)
#
,
Y
n
(x) =
2
π
J
n
(x) log
x
2
!
−
1
π
n−1
X
m=0
x
2
!
2m−n
(n−m−1)!
m!
−
−
1
π
∞
X
m=0
(−1)
m
x
2
2m+n
m!(m+n)!
Γ
0
(m+1)
Γ(m+1)
+
Γ
0
(n+m+1)
Γ(n+m+1)
.
1.2.2. Ôóíêöèè Áåññåëÿ âòîðîãî ðîäà - ôóíêöèè Âåáåðà-Øëåôëè Ôóíêöèè Áåññåëÿ öåëîãî èíäåêñà Jn è J−n ëèíåéíî çàâèñèìû è ïîòîìó íå îáðàçóþò ôóíäàìåíòàëüíîé ñèñòåìû ðåøåíèé óðàâíåíèÿ Áåññåëÿ ñ ν 2 = n2 . Äëÿ òîãî, ÷òîáû îáîéòè ýòó ïðîáëåìó, áûëè ââåäåíû òàê íàçûâàåìûå ôóíêöèè Áåññåëÿ âòîðîãî ðîäà Yν (x) êàê ëèíåéíûå êîìáèíàöèè ñëåäóþùåãî âèäà cos πνJν (x) − J−ν (x) Yν (x) ≡ . (34) sin πν Î÷åâèäíî, ÷òî â ñèëó ëèíåéíîñòè óðàâíåíèÿ Áåññåëÿ ôóíêöèÿ Yν (x), êàê ëè- íåéíàÿ êîìáèíàöèÿ ðåøåíèé, òàêæå ÿâëÿåòñÿ åãî ðåøåíèåì. Ýòè ôóíêöèè ïðèíÿòî íàçûâàòü èìåíàìè Âåáåðà è Øëåôëè. Òåðìèí ôóíêöèè Íåéìàíà, ââåäåííûé äëÿ ýòèõ ôóíêöèé, íàïðèìåð, â ó÷åáíèêå [4], ïî-âèäèìîìó, íåäî- ñòàòî÷íî îáîñíîâàí ñ èñòîðè÷åñêîé òî÷êè çðåíèÿ [1,5]. Äåòåðìèíàíò Âðîí- ñêîãî, ïîäñ÷èòàííûé äëÿ ïàðû ôóíêöèé Jν (x) è Yν (x): 1 2 W [Jν (x), Yν (x)] = − W [Jν (x), J−ν (x)] = , (35) sin πν πx íå îáðàùàåòñÿ â íóëü íè ïðè êàêèõ çíà÷åíèÿõ èíäåêñîâ. Ïîýòîìó îáùåå ðåøå- íèå óðàâíåíèÿ Áåññåëÿ (1) äëÿ ëþáîãî çíà÷åíèÿ èíäåêñà ν ñòàíäàðòíî ïðåä- ñòàâëÿåòñÿ â âèäå y(x) = C1 Jν (x) + C2 Yν (x) . (36) Äëÿ òîãî, ÷òîáû ÿâíî ïðåäñòàâèòü ðàçëîæåíèå ôóíêöèé Yn (x), îáû÷íî ïîëü- çóþòñÿ ïðåäåëîì Yn = ν→n lim Yν .  ýòîì ïðåäåëå cos πν → (−1)n , sin πν → 0, ñëåäîâàòåëüíî, ñ ó÷åòîì ñîîòíîøåíèÿ (33) ïîëó÷àåì íåîïðåäåëåííîñòü òèïà 0. Âîñïîëüçîâàâøèñü ïðàâèëîì Ëîïèòàëÿ (L'Hospital) 0 1 ∂ 1 ∂ " # lim −π tan πν Jν (x) + Yn (x) = ν→n Jν (x) − J−ν (x) , (37) π ∂ν cos πν ∂ν èñêîìóþ ôóíêöèþ ïðèâîäÿò ê ñëåäóþùåìó ñòàíäàðòíîìó âèäó n−1 !2m−n 2 x 1 x (n−m−1)! ! X Yn (x) = Jn (x) log − − π 2 π m=0 2 m! 2m+n x Γ0 (m+1) Γ0 (n+m+1) 1 X∞ − (−1) m 2 + . (38) π m=0 m!(m+n)! Γ(m+1) Γ(n+m+1) Çäåñü è äàëåå øòðèõ ñèìâîëèçèðóåò ïðîèçâîäíóþ îò óêàçàííîé ôóíêöèè ïî å¼ àðãóìåíòó. Âûâîä ýòîé ôîðìóëû íå âõîäèò â îáÿçàòåëüíóþ ÷àñòü íàøåé 10
Страницы
- « первая
- ‹ предыдущая
- …
- 8
- 9
- 10
- 11
- 12
- …
- следующая ›
- последняя »