ВУЗ:
Составители:
Рубрика:
J
n
J
−n
ν
2
=
n
2
Y
ν
(x)
Y
ν
(x) ≡
cos πνJ
ν
(x) − J
−ν
(x)
sin πν
.
Y
ν
(x)
J
ν
(x) Y
ν
(x)
W [J
ν
(x), Y
ν
(x)] = −
1
sin πν
W [J
ν
(x), J
−ν
(x)] =
2
πx
,
ν
y(x) = C
1
J
ν
(x) + C
2
Y
ν
(x) .
Y
n
(x)
Y
n
= lim
ν→n
Y
ν
cos πν → (−1)
n
sin πν → 0
0
0
Y
n
(x) =
1
π
lim
ν→n
"
−π tan πν J
ν
(x) +
∂
∂ν
J
ν
(x) −
1
cos πν
∂
∂ν
J
−ν
(x)
#
,
Y
n
(x) =
2
π
J
n
(x) log
x
2
!
−
1
π
n−1
X
m=0
x
2
!
2m−n
(n−m−1)!
m!
−
−
1
π
∞
X
m=0
(−1)
m
x
2
2m+n
m!(m+n)!
Γ
0
(m+1)
Γ(m+1)
+
Γ
0
(n+m+1)
Γ(n+m+1)
.
1.2.2. Ôóíêöèè Áåññåëÿ âòîðîãî ðîäà - ôóíêöèè Âåáåðà-Øëåôëè
Ôóíêöèè Áåññåëÿ öåëîãî èíäåêñà Jn è J−n ëèíåéíî çàâèñèìû è ïîòîìó
íå îáðàçóþò ôóíäàìåíòàëüíîé ñèñòåìû ðåøåíèé óðàâíåíèÿ Áåññåëÿ ñ ν 2 =
n2 . Äëÿ òîãî, ÷òîáû îáîéòè ýòó ïðîáëåìó, áûëè ââåäåíû òàê íàçûâàåìûå
ôóíêöèè Áåññåëÿ âòîðîãî ðîäà Yν (x) êàê ëèíåéíûå êîìáèíàöèè ñëåäóþùåãî
âèäà
cos πνJν (x) − J−ν (x)
Yν (x) ≡ . (34)
sin πν
Î÷åâèäíî, ÷òî â ñèëó ëèíåéíîñòè óðàâíåíèÿ Áåññåëÿ ôóíêöèÿ Yν (x), êàê ëè-
íåéíàÿ êîìáèíàöèÿ ðåøåíèé, òàêæå ÿâëÿåòñÿ åãî ðåøåíèåì. Ýòè ôóíêöèè
ïðèíÿòî íàçûâàòü èìåíàìè Âåáåðà è Øëåôëè. Òåðìèí ôóíêöèè Íåéìàíà,
ââåäåííûé äëÿ ýòèõ ôóíêöèé, íàïðèìåð, â ó÷åáíèêå [4], ïî-âèäèìîìó, íåäî-
ñòàòî÷íî îáîñíîâàí ñ èñòîðè÷åñêîé òî÷êè çðåíèÿ [1,5]. Äåòåðìèíàíò Âðîí-
ñêîãî, ïîäñ÷èòàííûé äëÿ ïàðû ôóíêöèé Jν (x) è Yν (x):
1 2
W [Jν (x), Yν (x)] = − W [Jν (x), J−ν (x)] = , (35)
sin πν πx
íå îáðàùàåòñÿ â íóëü íè ïðè êàêèõ çíà÷åíèÿõ èíäåêñîâ. Ïîýòîìó îáùåå ðåøå-
íèå óðàâíåíèÿ Áåññåëÿ (1) äëÿ ëþáîãî çíà÷åíèÿ èíäåêñà ν ñòàíäàðòíî ïðåä-
ñòàâëÿåòñÿ â âèäå
y(x) = C1 Jν (x) + C2 Yν (x) . (36)
Äëÿ òîãî, ÷òîáû ÿâíî ïðåäñòàâèòü ðàçëîæåíèå ôóíêöèé Yn (x), îáû÷íî ïîëü-
çóþòñÿ ïðåäåëîì Yn = ν→n
lim Yν . Â ýòîì ïðåäåëå cos πν → (−1)n , sin πν → 0,
ñëåäîâàòåëüíî, ñ ó÷åòîì ñîîòíîøåíèÿ (33) ïîëó÷àåì íåîïðåäåëåííîñòü òèïà
0. Âîñïîëüçîâàâøèñü ïðàâèëîì Ëîïèòàëÿ (L'Hospital)
0
1 ∂ 1 ∂
" #
lim −π tan πν Jν (x) +
Yn (x) = ν→n Jν (x) − J−ν (x) , (37)
π ∂ν cos πν ∂ν
èñêîìóþ ôóíêöèþ ïðèâîäÿò ê ñëåäóþùåìó ñòàíäàðòíîìó âèäó
n−1 !2m−n
2 x 1 x (n−m−1)!
!
X
Yn (x) = Jn (x) log − −
π 2 π m=0 2 m!
2m+n
x
Γ0 (m+1) Γ0 (n+m+1)
1 X∞
− (−1) m 2 + . (38)
π m=0 m!(m+n)! Γ(m+1) Γ(n+m+1)
Çäåñü è äàëåå øòðèõ ñèìâîëèçèðóåò ïðîèçâîäíóþ îò óêàçàííîé ôóíêöèè ïî
å¼ àðãóìåíòó. Âûâîä ýòîé ôîðìóëû íå âõîäèò â îáÿçàòåëüíóþ ÷àñòü íàøåé
10
Страницы
- « первая
- ‹ предыдущая
- …
- 8
- 9
- 10
- 11
- 12
- …
- следующая ›
- последняя »
