Три лекции по теории функций Бесселя. Балакин А.Б. - 11 стр.

UptoLike

Составители: 

Рубрика: 

Y
n
(x)
x 0
J
0
(0) = 1 n = 0
J
n
(0) = 0 J
n
(0) = n 1
Y
n
(0) = n 1 Y
0
(0) = −∞
H
(1)
ν
(x) J
ν
+ iY
ν
(x) =
i
sin πν
h
J
ν
(x)e
ν
J
ν
(x)
i
,
H
(2)
ν
(x) J
ν
iY
ν
(x) =
i
sin πν
h
J
ν
(x) J
ν
(x)e
ν
i
,
x z = x+iy
H
(1)
ν
(x) = e
ν
H
(1)
ν
(x) , H
(2)
ν
(x) = e
ν
H
(2)
ν
(x) ,
ν ν
x ix
J
ν
(ix)
y(x) = C
1
I
ν
(x) + C
2
K
ν
(x) ,
I
ν
(x) K
ν
(x)
I
ν
(x) i
ν
J
ν
(ix) =
X
m=0
x
2
ν+2m
Γ(m+1)Γ(ν+m+1)
,
ïðîãðàììû, îäíàêî (38) èëëþñòðèðóåò âàæíîå ñâîéñòâî ôóíêöèé Yn (x): âñå
îíè íåîãðàíè÷åííî âîçðàñòàþò ïðè x → 0. Óìåñòíî íàïîìíèòü, ÷òî äëÿ ôóíê-
öèé Áåññåëÿ ïåðâîãî ðîäà âûïîëíÿþòñÿ ñîîòíîøåíèÿ: J0 (0) = 1 (ïðè n = 0)
è Jn (0) = 0, J−n (0) = ∞, åñëè n ≥ 1. Äëÿ ôóíêöèé Áåññåëÿ âòîðîãî ðîäà
Yn (0) = ∞ ïðè n ≥ 1 èç-çà âòîðîãî ñëàãàåìîãî â (38), à Y0 (0) = −∞ èç-çà
íàëè÷èÿ ëîãàðèôìà â ïåðâîì ñëàãàåìîì ýòîé ôîðìóëû.

    1.2.3. Ôóíêöèè Áåññåëÿ òðåòüåãî ðîäà - ôóíêöèè Õàíêåëÿ

     Ôóíêöèè Áåññåëÿ òðåòüåãî ðîäà, îïðåäåëåííûå ñëåäóþùèì îáðàçîì:
                                            i h
           Hν(1) (x) ≡ Jν + iYν (x) =           Jν (x)e−iπν − J−ν (x) ,   (39)
                                                                     i

                                         sin πν
                                     i h
            Hν(2) (x) ≡ Jν − iYν (x) =      J−ν (x) − Jν (x)eiπν ,    (40)
                                                                i

                                  sin πν
îêàçàëèñü âåñüìà ïîëåçíûìè ïðè àíàëèòè÷åñêîì ïðîäîëæåíèè ôóíêöèé Áåñ-
ñåëÿ â êîìïëåêñíóþ îáëàñòü x → z = x + iy . Â äàííîì êóðñå ëåêöèé ôóíêöèè
Õàíêåëÿ ïðèâîäÿòñÿ èñêëþ÷èòåëüíî â ñïðàâî÷íûõ öåëÿõ. Ïîä÷åðêíåì òîëüêî
îäíî çàìå÷àòåëüíîå ñâîéñòâî ýòèõ ôóíêöèé:
                (1)                             (2)
              H−ν (x) = eiπν Hν(1) (x) ,    H−ν (x) = e−iπν Hν(2) (x) ,   (41)

óêàçûâàþùåå íà ñèììåòðèþ îòíîñèòåëüíî çàìåíû èíäåêñà ν íà −ν .

            1.2.4. Ôóíêöèè Áåññåëÿ ìíèìîãî àðãóìåíòà

     Ìîäèôèöèðîâàííîå óðàâíåíèå Áåññåëÿ (2) ìîæíî ôîðìàëüíî ïîëó÷èòü
èç óðàâíåíèÿ Áåññåëÿ (1) çàìåíîé x íà ix, ñëåäîâàòåëüíî, ôóíêöèÿ Áåññåëÿ
Jν (ix) ÿâëÿåòñÿ ðåøåíèåì óðàâíåíèÿ (2). Îäíàêî, äëÿ òîãî, ÷òîáû ïðåäñòà-
âèòü îáùåå ðåøåíèå óðàâíåíèÿ (2) ñ ïîìîùüþ äåéñòâèòåëüíûõ ôóíêöèé

                         y(x) = C1 Iν (x) + C2 Kν (x) ,                   (42)

áûëè ââåäåíû ôóíêöèè Áåññåëÿ ìíèìîãî àðãóìåíòà Iν (x) è Kν (x) ïî ñëåäó-
þùèì ïðàâèëàì:
                                                       ν+2m
                                           ∞           x
                Iν (x) ≡ i−ν Jν (ix) =                 2
                                                                          (43)
                                           X
                                                                    ,
                                         m=0    Γ(m+1)Γ(ν+m+1)

                                           11