Краткие сведения по стохастической финансовой математике. Барабанов А.Е. - 28 стр.

UptoLike

Составители: 

Рубрика: 

C
(f
1
) π
= (β
, γ
)
β
=
1
1 + r
µ
f
a
f
b
f
a
b a
(1 + a)
,
γ
=
1
S
0
f
b
f
a
b a
,
X
π
1
f
1
X
π
0
= C
(f
1
)
c
= (p
f
a
+q
f
b
)/(1+r))
x
c
C
(f
1
) c
x
c
x
(
e
P
n
)
n=1
lim
n→∞
E
e
P
n
f(S
0
(1 + ρ)) = c
(1 + r).
(
e
P
n
)
n=1
P
[a, b] ρ = 0
lim
n→∞
E
e
P
n
f(S
0
(1 + ρ)) = E
P
f(S
0
(1 + ρ)) = f(S
0
(1 + a))P
({a}) + f(S
0
(1 + b))P
({b})
= f
a
p
+ f
b
q
= c
(1 + r),
c
C
(f
1
) c
π
= (β
, γ
)
β
+γ
S
0
= c
β
(1+r)+γ
S
0
(1+ρ) f(S
0
(1+ρ))
ρ [a, b]
β
(1 + r) + γ
S
0
(1 + t) f(S
0
(1 + t)) t [a, b].
β
γ
φ(t) = β
(1+r)+γ
S
0
(1+t)
φ(a) = f
a
φ(b) = f
b
β
γ
f(S
0
(1 + t)) [a, b]
(a, f
a
) (b, f
b
)
φ β
(1 + r) +
γ
S
0
(1 + t) f (S
0
(1 + t)) [a, b] π
f
1
β
+γ
S
0
=
1
(1 + r)(b a)
£
f
a
(b+11r)+f
b
(a1+1+r)
¤
=
1
1 + r
(f
a
p
+f
b
q
) = c
,
C
(f
1
) c
f
1
f(S
0
(1 + x)) x r