ВУЗ:
Составители:
Рубрика:
0 < ϕ
2
− ϕ
1
< 2π r(ϕ)
[ϕ
1
, ϕ
2
] Q
ρ(ϕ)
m =
1
2
ϕ
2
Z
ϕ
1
r
2
(ϕ)ρ(ϕ) dϕ,
M
x
=
1
3
ϕ
2
Z
ϕ
1
r
3
(ϕ) sin ϕ ρ(ϕ) dϕ,
M
y
=
1
3
ϕ
2
Z
ϕ
1
r
3
(ϕ) cos ϕ ρ(ϕ) dϕ,
I
x
=
1
4
ϕ
2
Z
ϕ
1
r
4
(ϕ) sin ϕ ρ(ϕ) dϕ,
I
y
=
1
4
ϕ
2
Z
ϕ
1
r
4
(ϕ) cos ϕ ρ(ϕ) dϕ.
x
2
+ y
2
= R
2
y ≥ 0 y = 0
J
R
ρ = const
y
2
(x) =
√
R
2
− x
2
y
1
(x) ≡ 0
m =
R
Z
−R
ρ
√
R
2
− x
2
dx = 2
R
Z
0
ρ
√
R
2
− x
2
dx =
��� 0 < ϕ2 − ϕ1 < 2π � r(ϕ) � ����������� ������� ��
[ϕ1 , ϕ2 ]� � ����� �� ������� Q ������������ ����� � �����
������ ρ(ϕ)� �����
�ϕ2
1
m= r2 (ϕ)ρ(ϕ) dϕ,
2
ϕ1
�ϕ2
1
Mx = r3 (ϕ) sin ϕ ρ(ϕ) dϕ,
3
ϕ1
�ϕ2
1
My = r3 (ϕ) cos ϕ ρ(ϕ) dϕ,
3
ϕ1
�ϕ2
1
Ix = r4 (ϕ) sin ϕ ρ(ϕ) dϕ,
4
ϕ1
�ϕ2
1
Iy = r4 (ϕ) cos ϕ ρ(ϕ) dϕ.
4
ϕ1
���������� ������ ������� ����������� �� ��� �� ����
����� �����
������
����� ���������� ������ ���� ��������� ������������
�������� x2 + y2 = R2� y ≥ 0� y = 0�
���������� ������ �������� ������������ ����� ��������
����� ������� R� ������������� � ������� ��������������
����� ρ = const � ��������� ��������� ��� ����������
����� �������� �������������
√ �������� ����� � ������
������ ������� y2(x) = R − x2 ������ ������� �������
2
�� ����������� � y1(x) ≡ 0� ������� ����� �����
�R √ �R √
m= ρ R2 − x2 dx = 2 ρ R2 − x2 dx =
−R 0
��
Страницы
- « первая
- ‹ предыдущая
- …
- 42
- 43
- 44
- 45
- 46
- …
- следующая ›
- последняя »
