Теория вероятностей. Бестугин А.Р - 46 стр.

UptoLike

46
()
( , )
(/) ( / ) .
( )
ijij
ij i j
j
i
Px yp
px y P x y
Py
p
ξ
η
ξ= η=
= η= = =
η=
(6.6)
Ïðè ýòîì èñïîëüçóåòñÿ îïðåäåëåíèå óñëîâíîé âåðîÿòíîñòè
ñîáûòèÿ
()
i
xξ=
â ïðåäïîëîæåíèè, ÷òî ñîáûòèå
()
j
y
η=
íàñòó-
ïèëî. ×àñòíîå ðàñïðåäåëåíèå
()
j
p
η
íàõîäèòñÿ ïî ôîðìóëå (6.4).
Àíàëîãè÷íî íàõîäèòñÿ óñëîâíîå ðàñïðåäåëåíèå ñëó÷àéíîé
âåëè÷èíû η ïðè
()
i
xξ=
()
(/) ( / ) ,
ij
ji j i
i
p
py x P y x
p
η
ξ
= ξ= =
(6.7)
ãäå
()
i
p
ξ
âû÷èñëÿþòñÿ ïî ôîðìóëå (6.3).
6.3. Óñëîâèÿ íåçàâèñèìîñòè äâóõ ñëó÷àéíûõ âåëè÷èí
Îïðåäåëåíèå. Ñëó÷àéíûå âåëè÷èíû ξ è η íàçûâàþòñÿ íåçà-
âèñèìûìè, åñëè ðàñïðåäåëåíèå îäíîé ñëó÷àéíîé âåëè÷èíû íå
çàâèñèò îò òîãî, êàêîå çíà÷åíèå ïðèíèìàåò äðóãàÿ ñëó÷àéíàÿ
âåëè÷èíà.
Ýòî îïðåäåëåíèå ýêâèâàëåíòíî ñëåäóþùåìó: ñëó÷àéíûå âå-
ëè÷èíû ξ è η íåçàâèñèìû, åñëè äëÿ ëþáûõ x, y ñïðàâåäëèâî
(,)( , )( )( ) ()(),Fxy P x y P xP y FxFy
ξη ξ η
< η< < η< =
(6.8)
ò. å. ñîáûòèÿ
()xξ<
è
()yη<
ÿâëÿþòñÿ íåçàâèñèìûìè ïðè ëþáûõ
çíà÷åíèÿõ x è y.
Äëÿ äèñêðåòíûõ ñëó÷àéíûõ âåëè÷èí óñëîâèå íåçàâèñèìîñòè
(6.22) ìîæíî çàïèñàòü â âèäå
() ()
(, )()( ) ,
ij i j i j
ij
PP x y P xP y PP
ξη
= η= = η= =
(6.9)
à äëÿ íåïðåðûâíûõ ñëó÷àéíûõ âåëè÷èí – â âèäå
(, ) ()().fxy fxfy
ξη ξ η
=
(6.10)
 ñëó÷àå ñèñòåìû äâóõ íåçàâèñèìûõ ñëó÷àéíûõ âåëè÷èí óñ-
ëîâíûå ðàñïðåäåëåíèÿ ñîâïàäàþò ñ ÷àñòíûìè (áåçóñëîâíûìè)
ðàñïðåäåëåíèÿìè. Åñëè ñëó÷àéíûå âåëè÷èíû ÿâëÿþòñÿ äèñêðåò-
íûìè, òî
() ()
(/) , (/) ,
ij ji
ij
px y p py x p
ξη
ξη
==
ïðè ýòîì èñïîëüçîâàëèñü ñîîòíîøåíèÿ (6.6) è (6.9).