Теория вероятностей и математическая статистика. Билялов Р.Ф. - 29 стр.

UptoLike

Составители: 

Φ(a) 0.49
a 2.32 a =
k500
20
, k 546.5.
p = 1/4.
A =
B =
p = 1/4, q = 3/4, n = 5. P (A) = C
1
5
pq
4
= 5 ·
3
4
4
5
=
405
1024
,
P (B) = C
2
5
p
2
q
3
= 10 ·
3
3
4
5
=
135
512
.
A = {X = 4},
B = {X > 4}.
n = 8. p = q = 0.5 P (A) = C
4
8
p
4
q
4
=
8·7·6·5
4!·2
8
=
35
128
,
P (B) =
1
2
(1 P (A)) =
93
256
.
P (X = 0) = 0.2 ·0.6 =
0.12, P (X = 1) = 0.2 ·0.4 + 0.8 ·0.6 = 0.56 P (X = 2) = 0.8 ·0.4 = 0.32.
îòêóäà Φ(a) ≥ 0.49. Èç òàáëèöû çíà÷åíèé ôóíêöèè Ëàïëàñà íàõîäèì,
÷òî a ≥ 2.32. Òàê êàê a = k−500
                            20 , òî k ≥ 546.5.


2.3.1 4-îå ïðàêòè÷åñêîå çàíÿòèå. Ïîñëåäîâàòåëüíîñòü èñ-
      ïûòàíèé
  Çàäà÷à 14.312. Äëÿ ñòðåëêà, âûïîëíÿþùåãî óïðàæíåíèå â òèðå,
âåðîÿòíîñòü ïîïàñòü â ÿáëî÷êî ïðè îäíîì âûñòðåëå íå çàâèñèò îò
ðåçóëüòàòîâ ïðåäøåñòâóþøèõ âûñòðåëîâ è ðàâíà p = 1/4. Ñïîðòñìåí
ñäåëàë 5 âûñòðåëîâ. Íàéòè âåðîÿòíîñòü ñîáûòèé: A =({ðîâíî îäíî
ïîïàäàíèå}, B ={ðîâíî äâà ïîïàäàíèÿ}.
                                                                    4
    Ðåøåíèå. p = 1/4, q = 3/4, n = 5. P (A) = C51 pq 4 = 5 · 435 = 1024  405
                                                                             ,
           2 2 3        33    135
P (B) = C5 p q = 10 · 45 = 512 .
    Çàäà÷à 14.320.  ÿ÷åéêó ïàìÿòè ÝÂÌ çàïèñûâàåòñÿ 8-ðàçðÿäíîå
äâîè÷íîå ÷èñëî. Çíà÷åíèÿ 0 è 1 â êàæäîì ðàçðÿäå ïîÿâëÿþòñÿ ñ
ðàâíîé âåðîÿòíîñòüþ. Ñëó÷àéíàÿ âåëè÷èíà Õ  ÷èñëî åäèíèö â çà-
ïèñè äâîè÷íîãî ÷èñëà. Íàéòè âåðîÿòíîñòü ñîáûòèé: A = {X = 4},
B = {X > 4}.
    Ðåøåíèå. n = 8. p = q = 0.5, P (A) = C84 p4 q 4 = 8·7·6·5  4!·28
                                                                          35
                                                                      = 128  ,
         1                 93
P (B) = 2 (1 − P (A)) = 256 .
    Çàäà÷à 14.338. Ïðîèçâîäèòñÿ ñòðåëüáà èç îðóäèÿ ïî óäàëÿþ-
ùåéñÿ öåëè. Ïðè ïåðâîì âûñòðåëå âåðîÿòíîñòü ïîïàäàíèÿ ðàâíà 0.8,
ïðè êàæäîì ñëåäóþùåì âûñòðåëå âåðîÿòíîñòü ïîïàäàíèÿ óìåíüøà-
åòñÿ â 2 ðàçà. Ñëó÷àéíàÿ âåëè÷èíà Õ  ÷èñëî ïîïàäàíèé â öåëü ïðè
äâóõ âûñòðåëàõ. Îïèñàòü çàêîí ðàñïðåäåëåíèÿ.
    Ðåøåíèå. Âîçìîæíûå çíà÷åíèÿ Õ: 0, 1, 2. P (X = 0) = 0.2 · 0.6 =
0.12, P (X = 1) = 0.2 · 0.4 + 0.8 · 0.6 = 0.56, P (X = 2) = 0.8 · 0.4 = 0.32.
    Çàäà÷à 4.1. Äâà èãðîêà, ïîî÷åðåäíî èçâëåêàþò øàðû (áåç âîç-
âðàùåíèÿ) èç óðíû, ñîäåðæàùåé 2 áåëûõ è 4 ÷åðíûõ øàðà. Âûèãðû-
âàåò òîò, êòî ïåðâûì âûíåò áåëûé øàð. Íàéòè âåðîÿòíîñòü âûèãðû-
øà ó÷àñòíèêà, íà÷àâøåãî èãðó.
    Ðåøåíèå. Ïóñòü Á îçíà÷àåò ñîáûòèå, ñîñòîÿùåå â òîì, ÷òî èãðîê
âûòàùèë áåëûé øàð, ×  ÷åðíûé øàð. Ïåðâûé èãðîê âûèãðàåò ïðè
ñëåäóþùèõ ðàñêëàäàõ â ïîñëåäîâàòåëüíîñòÿõ èñïûòàíèé: Á, ××Á,




                                     29