Теория вероятностей и математическая статистика. Билялов Р.Ф. - 54 стр.

UptoLike

Составители: 

ξ
1
ξ
2
P (ξ
1
= k) = P (ξ
2
= k) = 0.1, k = 0, 1, ..., 9. ξ
1
ξ
2
Mξ
1
= Mξ
2
=
9
X
k=0
kP (ξ
1
= k) = 0.1 · 45 = 4.5,
Mξ
2
1
=
9
X
k=0
k
2
P (ξ
1
= k) = 28.5,
Dξ
1
= Dξ
2
= 8.25, M(ξ
1
+ ξ
2
) = 9, Mη
2
= M(ξ
1
ξ
2
) = 20.25,
Dη
1
= D(ξ
1
+ ξ
2
) = 16.5,
Dη
2
= Mη
2
2
(Mη
2
)
2
= 28.5
2
20.25
2
= 402.1875.
ξ
1
, ξ
2
, ξ
3
, ξ
4
, ξ
5
Dξ
1
= σ
2
. ξ
1
+ ξ
2
ξ
3
+ ξ
4
+ ξ
5
; ξ
1
+ ξ
2
+ ξ
3
ξ
3
+ ξ
4
+ ξ
5
.
cov(ξ
1
+ξ
2
, ξ
3
+ξ
4
+ξ
5
) = 0, cov(ξ
1
+ξ
2
+ξ
3
, ξ
3
+ξ
4
+ξ
5
) =
cov(ξ
3
, ξ
3
) = Dξ
3
= σ
2
, D = (ξ
1
+ ξ
2
+ ξ
3
) = D(ξ
3
+ ξ
4
+ ξ
5
) = 3σ
2
.
ρ(ξ
1
+ ξ
2
+ ξ
3
, ξ
3
+ ξ
4
+ ξ
5
) =
σ
2
3σ
2
· 3σ
2
=
1
3
.
ξ
1
, ξ
2
, . . . , ξ
k
, . . . ,
P (ξ
k
=
k) = P (ξ
k
=
k) =
1
2
k
, P (ξ
k
= 0) = 1
1
k
Mξ
k
= (
k) ·
1
2
k
+ 0 · (1
1
k
) +
k ·
1
2
k
= 0,
Mξ
2
k
= k ·
1
2
k
+ 0 · (1
1
k
) + k ·
1
2
k
=
k, Dξ
k
=
k.
n
P
k=1
Dξ
k
n
2
=
n
P
k=1
k
n
2
<
n
n
n
2
=
1
n
0 n .
    Ðåøåíèå. Ïóñòü ξ1 − ñëó÷àéíàÿ âåëè÷èíà, çíà÷åíèÿ êîòîðîé ñîâ-
ïàäàþò ñ ïåðâîé öèôðîé êàðòû, ξ2 − òî æå ñàìîå äëÿ âòîðîé öèôðû.
P (ξ1 = k) = P (ξ2 = k) = 0.1, k = 0, 1, ..., 9. ξ1 è ξ2 íåçàâèñèìû.
                                9
                                X
              M ξ1 = M ξ2 =           kP (ξ1 = k) = 0.1 · 45 = 4.5,
                                k=0

                                9
                                X
                      M ξ12 =         k 2 P (ξ1 = k) = 28.5,
                                k=0

     Dξ1 = Dξ2 = 8.25, M (ξ1 + ξ2 ) = 9, M η2 = M (ξ1 ξ2 ) = 20.25,
                           Dη1 = D(ξ1 + ξ2 ) = 16.5,
           Dη2 =   M η22   − (M η2 )2 = 28.52 − 20.252 = 402.1875.
    Çàäà÷à 6.11. Ñëó÷àéíûå âåëè÷èíû ξ1 , ξ2 , ξ3 , ξ4 , ξ5 íåçàâèñèìû.
Dξ1 = σ 2 . Íàéòè êîýôôèöèåíò êîððåëÿöèè âåëè÷èí: à) ξ1 + ξ2 è
ξ3 + ξ4 + ξ5 ; á) ξ1 + ξ2 + ξ3 è ξ3 + ξ4 + ξ5 .
    Ðåøåíèå. cov(ξ1 +ξ2 , ξ3 +ξ4 +ξ5 ) = 0, cov(ξ1 +ξ2 +ξ3 , ξ3 +ξ4 +ξ5 ) =
cov(ξ3 , ξ3 ) = Dξ3 = σ 2 , D = (ξ1 + ξ2 + ξ3 ) = D(ξ3 + ξ4 + ξ5 ) = 3σ 2 .

                                                   σ2       1
              ρ(ξ1 + ξ2 + ξ3 , ξ3 + ξ4 + ξ5 ) = √          = .
                                                   2
                                                 3σ · 3σ 2  3

    Çàäà÷à 6.24. Ïðèìåíèì ëè çàêîí áîëüøèõ ÷èñåë ê ïîñëåäîâà-
òåëüíîñòè
       √ íåçàâèñèìûõ√ñëó÷àéíûõ     âåëè÷èí ξ1 , ξ2 , . . . , ξk , . . . , åñëè
                             1
P (ξk = k) = P (ξk = − k) = 2√ k
                                 , P (ξk = 0) = 1 − √1k ?
    Ðåøåíèå.
                   √     1             1   √    1
          M ξk = (− k) · √ + 0 · (1 − √ ) + k · √ = 0,
                        2 k             k      2 k
                   1                   1        1  √        √
      M ξk2 = k · √ + 0 · (1 −        √ ) + k · √ = k, Dξk = k.
                 2 k                    k      2 k
            P
            n         Pn √
               Dξk         k           √
           k=1        k=1             n n    1
                    =        <            = √ → 0 ïðè n → ∞.
              n2        n2             n2     n

                                         54